
- 1 -

DEFINITION STRUCTURE OF PROGRAM FOR AUTONOMOUSLY

DISABLING INVADING VIRUS, PROGRAM EQUIPPED WITH STRUCTURE,

STORAGE MEDIUM INSTALLED WITH PROGRAM, AND METHOD/DEVICE

FOR AUTONOMOUSLY SOLVING VIRUS PROBLEM

RELATED APPLICATIONS

 This application is a continuation-in-part

application of, and claims priority to, PCT application

number PCT/JP2015/056268 filed March 3, 2015

(International Publication number WO2016/021220), which

claims priority to JP Patent Application 2014-158612

filed August 4, 2014, all of which are hereby

incorporated by reference.

Background of the Invention

Field of the Invention

[0001]

 The present invention relates to a program structure

theory and, in particular, to a definition structure of a

program for autonomously solving the problems of computer

viruses (hereinafter, also simply called "viruses"), a

program equipped with the same structure, a storage

medium installed with the same program, and a method and

device for autonomously solving the virus problems.

Description of the Related Art

- 2 -

[0002]

 In consideration of intrinsic dangers of

conventional programs, program problems not only include

computer virus problems but also have caused situations

which cannot be justified based on the low quality,

burdensomeness of management of development, and surging

cost, only in view of improvement in usefulness.

[0003]

 It is a known fact that although programs have

advantageous effects of convenience, the programs face a

situation called the software crisis.

[0004]

 In such a current situation, the actual state of

maintenance of program development is a diabolical state

where even the will for improvement is precluded.

Furthermore, occurrence of computer viruses (hereinafter

also simply called "viruses") has a potential of

irresistibly collapsing the computer society, and this

field is in a situation where the foundation is shaken in

that no one is able to solve this problem. The

conventional way where the convenience of advantageous

effects is mentioned without sincerely solving the

problems of the software crisis cannot be taken any more.

[0005]

 Without sincerely solving the problems of the

software crisis, only in one view of convenience,

forcible standardization (Procrustean bed) by a strong

- 3 -

institutional system has dominated engineers, researchers,

and users, that is, almost all parties in this field in

the scale of human beings.

[0006]

 Resultantly, as with the fact that people who do not

notice the importance of solving program problems make

the program problems diabolical, the current policy for

virus problems is the same as this fact, and the idea is

entirely restricted to blocking of virus invasion at the

entry (virus buster). The danger of virus problems is

that any virus creator having the capability can

participate in virus creation in secrecy and with not

being located at all. That is, the seriousness is that

the problems are transformed into quantitative problems.

[0007]

 As to the virus problems, it can be conventionally

considered that invasion into a program cannot be blocked

unless the program exists. The human beings cannot

overcome the virus problems without changing the

consideration and finding a method of allowing the virus-

invaded program itself to disable the virus.

[0008]

 Against such a problem, currently existing products

addressing viruses (hereinafter, simply called

"products") are based on a concept of blocking invasion

of viruses into programs beforehand. That is, the

foundation on which the products depend cannot be

- 4 -

established without analyzing secretly obtained virus

tags and illegal information analysis invasion fragments.

Complete blocking of virus invasion cannot be achieved.

That is, intrinsically, the current policy for products

cannot serve as intrinsic method of solving virus

problems.

[0009]

 The present application is to discuss seriously

intrinsic measures against virus invasion problems having

advanced in a wrong direction as described above. In

this view, there is no technologies to be effectively

cited. Consequently, the following list includes

literature having common items in view of taking measures

against virus problems.

Citation List

Patent Literature

[0010]

Patent Literature 1: Japanese Patent Laid-Open No. 2013-

243864

Patent Literature 2: Japanese Patent Laid-Open No. 2012-

234579

[0011]

 In view of only one possible advanced virus being

capable of collapsing a computer system, a perception

that even one virus should not be allowed to invade a

program should be the right recognition. In other words,

- 5 -

this point has been an absolute requirement for solving

virus problems.

[0012]

 Consequently, the solution to virus problems cannot

be achieved by an idea such as a virus buster. That is,

without finding of the principle of a solving method

therefor, the virus problems cannot be solved.

[0013]

 The present invention is to solve the problems of

such a conventional art, and has an object to provide a

fundamental solving method against the computer virus

problems, that is, to provide a definition structure of a

program that autonomously solves the virus problems, and

a program equipped with this structure, a storage medium

installed with this structure, and a method of

autonomously solving the virus problems.

Summary of the Invention

[0014]

 To achieve such an object, the present invention

provides a method of solving (i.e., intrinsically

resolving) the virus problem through a new approach

having not existed. To specifically describe the present

invention, the description is made according to the

following sequence.

A. Background of reaching method of solving problems

B. Perception of virus problems

- 6 -

C. Construction of methodology intrinsic to present

application

[0015]

 (A. Background of reaching method of resolving

problems)

 The first instance of the research reaching the

present invention was started by the present inventor in

1973 based on a hypothesis that improvement in

description method can solve the software crisis. In

fifteen years on the former stage of this research, the

world knowledge (theses) was collected and several

hundred programs in various fields was dynamically

analyzed in order to consider the nature of programs.

The program dynamic analysis is indispensable for finding

a good static definition (source code) of a program. For

the sake of a good static definition of the dynamics, it

is important to know the dynamics well, which is not only

applied to the programs.

[0016]

 However, in this field, the program dynamic analysis

has not been sufficiently performed since that time.

Incidentally, FIG. 12 shows an aspect of the dynamics of

a program ascertained by this research. This diagram is

the first in the world. Without viewing the spectacle of

FIG. 12 on the dynamics of the program, it is considered

that modes of designing program languages, OSs and

application programs cannot be discussed. The fifteen

- 7 -

years during which the program dynamic analysis was

performed is a period allowing our description method on

programs to be sincerely discussed, for the present

inventor.

[0017]

 We, the human beings, can be conscious of what we

think, by ourselves. In a case in a living state

immediately before conversion of the consciousness into

characters or language, the state of possible

inspirational consciousness cannot be correctly

identified. In the research reaching to the present

invention, this living state is considered to have a

scheme of determining description. On the basis thereof,

a metaphysical model has been discussed and hypothesized.

This metaphysical model is denoted as "harmonic

structure". This is then described as "Conscious

Function". The origin of an algorithm for deriving FIG.

12 is what is obtained as a solution of the Conscious

Function. The Conscious Function is analyzed again as a

program using the knowledge of a program. This program

is then called a Scenario Function.

[0018]

 The Scenario Function is according to an

unprecedented program description method. The Scenario

Function is established as "a scheme of making a noun be

a subject and tracing genealogy for the subject". In

addition, without limitation to the program, the model of

- 8 -

any behavior we conduct can be concluded as the Conscious

Function.

[0019]

 The minimal unit of the harmonic structure is

associated with an existence of ontology. Existences are

defined by entities and attributes. According to the

Scenario Function, an existent identifier is interpreted

as a minimal class noun, an existent entity is

interpreted as the content of the noun, the content of

the noun is interpreted as a subject, and the attribute

is interpreted as a set of nouns to be subjectified. On

the stage of the Conscious Function, definition

description can be perceived to have duplicability.

Incidentally, the duplicability of a program is "provided

that the names of nouns belonging to a program language

and program specifications, the number of names, and

memory to be subjectified are the same, the source codes

of the program even by any creator coincide with each

other as if the source codes had been copied by a copier".

[0020]

 The (prototype) of the Scenario Function was

obtained in 1996, 23 years after start of this research.

The above facts are disclosed by theses on this research.

The basic part of the concept of the Scenario Function

has been patented since 1999 in Japan, the U.S. and

Europe. The Scenario Function has been used in 36

development projects. The characteristics of the

- 9 -

Scenario Function have been analyzed thereafter. In 2009,

it was verified that the following issues unresolvable by

conventional programs are established as methodology

according to the Scenario Function.

(1) Establishment of duplicability

(2) Finding (scheme of meaning) of automatic algorithm of

capturing scheme of meaning

(3) Scheme of automatically generating program

(4) Scheme of automatically supporting program

maintenance operation

(5) Extinction of concept of quality

[0021]

 The way of creating programs in this quarter-century

during which programs have been ascertained only in view

of programming languages is a proof of abandonment of the

method of solving the program problems. In consideration

that programs are descried matter, a creation method

(methodology) is indispensable to create the programs.

The program description method is established based on a

program having the duplicability.

[0022]

 (B. Perception of virus problems)

 Here, the virus problems are further discussed. The

method of solving virus problems includes the following

concepts.

(1) Block the virus before invasion into a program

- 10 -

(2) In addition to the above (1), the public authority is

added to criminalize and eliminate the virus problems.

(3) Invaded program (invaded medium) is caused to solve

the virus problems

[0023]

 In principle, the methods of virus invasion are as

many as the number of instructions of programs in

operation. While it cannot be known how many

instructions are operating in the world, an ungraspable

number of instructions are currently in operating states.

[0024]

 The ideas (1) and (2) of blocking virus invasion

cannot be regarded as proper ideas. In a manner

analogous to that the virus problems cannot reach the

solution to the program problems of the software crisis,

these ideas only partially resolve the virus problems and

are nothing but spurring chaos. The virus problems are

intrinsically simple technological problems due to a

defect of program creating method (this point is

described later); intrinsically, the problems cannot be

solved by a simple idea saying that you should not create

a virus and if you make it, the public authority punish

you cannot resolve the problem without claiming the

original responsibility. In other words, it can be said

that blocking of virus invasion cannot solve the virus

problems (cannot provide a fundamental resolution). As

described above, a single set of virus can collapse

- 11 -

computer systems. Technologies incapable of complete

invasion blocking are meaningless without exclusion in an

analogous manner. Consequently, the resolving methods

(1) and (2) cannot solve the virus problems.

[0025]

 Accordingly, a solution to the virus problems is

meaningless unless the solution is the final solution of

completely disabling viruses. Consequently, only (3) is

the remaining method of obtaining the solution. The

logical conclusion is that the final solution should be

obtained by this method.

[0026]

 (C. Construction of methodology intrinsic to present

application)

 The present invention has an aim of disabling

viruses. The present invention often uses a word,

solution, which is a word adopted to be discriminated in

vocabulary from a word, resolution. That is, the present

invention uses "solution" as fundamental elimination of

the problems, while using "resolution" as clinical

sealing of problems which cannot be intrinsically sealed.

[0027]

 Incidentally, the virus problem is a word having a

general meaning of adverse effects of a virus occurring

in a computer system. The virus is an executable program.

The virus invades to dwell in a program in operation

according to any method. After the virus dwells, the

- 12 -

program is contaminated. Program contamination is a

viral phenomenon irrelevant to a viral intent. Virus

contamination affects other programs that share a memory

area and are operating in synchronization. Meanwhile, a

viral symptom is a viral phenomenon intentionally caused

by a virus.

[0028]

 The invaded medium cannot ascertain the entity of

virus. It is intrinsic that even with awareness of the

viral symptom, it is too late to take any measure. In

other words, awareness of the viral symptom does not help

the solution, and the viral symptom appears after

contamination. That is, the contamination and the

symptom occur at different timing.

[0029]

 The virus problem is a word having the meaning of

adverse effects of contamination due to a virus occurring

in a computer system. The solution to the virus problems

is not elimination of the virus, or blocking of invasion.

The solution is unassisted elimination of contamination.

What is herein called the computer system is a program.

The viral intent is determination by a virus creator.

[0030]

 The virus is created based on the viral intent. The

viral intent is described later. The virus is an

executable program. The virus invades to dwell in a

program in operation according to any method. After the

- 13 -

virus dwells, the program is contaminated. The present

invention calls the program contaminated with the virus

an invaded medium. Program contamination is a viral

phenomenon irrelevant to a viral intent.

[0031]

 Program contamination affects other programs that

share a memory area and are operating in synchronization.

Meanwhile, a viral symptom is a viral phenomenon

intentionally caused by a virus. It should be considered

that even if the entity of virus is ascertained or the

way and symptom of virus are known in detail, measures

for solving the virus problems cannot be obtained

therefrom. The viral symptom appears after contamination.

That is, the contamination and the symptom occur at

different timing.

[0032]

 The reasons of occurrence of program contamination

are described as follows.

(1) contamination caused by virus invasion as a signal

(2) contamination caused in a process of establishing a

viral symptom

(3) contamination caused as a viral symptom

[0033]

 The program contamination results in overwriting of

instructive statements of a program. The way of

overwriting instructive statements is described later. A

viral symptom is a viral phenomenon intentionally caused

- 14 -

by a virus on the basis of an invaded medium. That is,

the viral symptom is a phenomenon of a viral intent.

Examples of the viral symptom are described later. The

invaded medium is a viral possession medium indispensable

to a virus. All the programs in operation are candidates

of possession media. The virus has a structure that is

not established by itself but is established based only

on the invaded medium. In view of solving the virus

problems, viral contamination of the invaded medium can

be regarded as an inevitable viral weak point. The

present invention detects viral contamination as a

predicate inconsistency occurring in the present program,

at timing before occurrence of the symptom. The

contamination is then disinfected, which solves the virus

problems.

[0034]

 The cause of the predicate inconsistency occurring

in the present program is viral contamination. The

predicate inconsistency is detected as situations

occurring on the structure of the present program. Thus,

the predicate inconsistency detected by the present

program is caused by viral contamination but is not based

on viral information. In summary, the present program

allows the virus to invade the present program freely,

and solve the virus problems. That is, even with any

intent of the virus and even with any ingenious way by

which the virus has been devised, the contamination of

- 15 -

the present program serving as an invaded medium

inevitably caused by the virus is disabled at timing

before occurrence of the viral symptom, thereby solving

the symptomatic problems. Thus, even with presence of

the virus, the intent cannot be achieved. The meaning of

"disabling the virus" is therefor. Consequently, even

with viral invasion, the intention of the original

operation of the program is not impeded.

[0035]

 FIG. 1D is a diagram showing an established main

concept in a research process of the present invention.

As shown in the diagram, the present invention ascertains

how the virus-invaded program recognizes the virus, as

program contamination. It is then considered that the

virus problems cannot be extinguished without detection

by the contaminated program itself. This was the turning

point for solving the virus problem. This was in 2000.

Reference sign 1D-1 denotes this situation. In order to

achieve the concept of solution, it is required to grasp

the characteristics of the Scenario Function further and

deeper. In an aspect of obtaining the completeness of an

algorithm of obtaining the solution of the Scenario

Function, the scheme of solution was ascertained in 2009.

Reference sign 1D-2 denotes this situation. Next, the

principle of solution was ascertained in 2011. Reference

sign 1D-3 denotes this situation. The structure of a

- 16 -

program of achieving solution was obtained in 2013.

Reference sign 1D-4 denotes this situation.

[0036]

 (Viral intent and viral symptom)

 The viral intent and symptom (example) are described

below. The viral intent is estimated to be developed

from this time forward. Consequently, description is

made according to separate levels.

Level 1: Utilization of existing system (rewriting of

input and output data, and DB information piracy)

Level 2: Insurgency of system (fluctuation in input and

output information)

Level 3: Achievement of silence of system (discard of

input and output information)

Level 4: Destruction of system (destruction of

conditional statement)

Level 5: System occupation (control of activation timing

of virus).

[0037]

 (Description of contamination of instructive

statements)

 The viral contamination results in contamination of

instructive statements of a program. The contamination

of instructive statements results in a phenomenon of

overwriting the instructive statements. The structure of

the instructive statement forms the contents of

contamination. That is, the contents are as follows.

- 17 -

(1) Data area used by instructive statements

(2) Instruction code of instructive statements

(3) Constant (constant value) directly used by

instructive statement

(4) Character string (stationary arrangement) directly

used by instructive statement

[0038]

 The contamination of a data area affects other

programs operating in synchronization using the same data

area. It cannot be recognized which instructive

statement in an invaded medium is contaminated, how many

instructive statements are contaminated, and which part

of an instructive statement is contaminated, without

observation at the timing of invasion. The present

invention has a scheme where upon execution of an

instructive statement belonging to a program, the

contamination of a data area used by the instructive

statement is observed by a scheme of ruling the

instructive statement. This scheme is called a vector.

[0039]

 The present program detects the contamination of an

instruction code according to an OS and Vector E42. The

OS detects the contamination of an instruction code as

destruction of an instruction. E42 detects the

destruction of an instruction as the contamination of

instruction code, and as logical inconsistency occurring

in the present program. The logical inconsistency is

- 18 -

detected using the stack of the number of established

subjects. The details are described later. The

contamination of a stationary arrangement, a constant

value and the name of an area can be regarded as

destruction of instruction code. If an OS and a

programming language are improved, the stationary

arrangement problems can be solved as destruction of an

instruction that allows automatic recovery, at timing and

simplicity more excellent than those of E42. The scheme

of E42 cannot be replaced with the mechanism of a

computer or improvement in OS or programming language.

The present invention suggests that destruction of an

instruction detected by an OS can be automatically

recovered by improvement in computer, OS or programming

language.

[0040]

 (Data area)

 The contents of a data area according to the present

invention are as follows.

(1) Fourth area provided for each vector

(2) Three types of flags provided for each vector

(3) Only a single counter of the number of established

subjects provided for a Scenario Function

(4) Only a single stack of the number of established

subjects provided for a Scenario Function

The contamination of the above (1) is detected by the

scheme of the present program (described later) and

- 19 -

automatically recovered. The contamination of the above

(2) is detected by a virus watching algorithm (described

later) established on the basis of the vector and

automatically recovered. The contamination of the above

(3) and (4) are detected as an underlying reason against

the establishment of E42 (described later). Intentional

contamination of an instructive statement also results in

contamination of an instruction. Contamination of a

comment statement (stationary statement) can be detected

by adopting the comment statement (stationary statement)

and a defined and known comment statement (stationary

statement) as comparative constants and by obtaining XOR

of both the constants upon execution. This scheme can be

established by vectors described later. In the present

invention, this solution is called a vaccine method. In

the present invention, contamination of the comment

statement (stationary statement) is regarded as a

stationary arrangement problem. The stationary

arrangement problem serves as a cause of contaminating

moving images or pictures in the web programming field.

[0041]

 (Gist of present invention)

 FIGS. 1A and 1C show the gist of the present

invention. In FIG. 1A, reference numeral 1A-1 denotes a

memory area of a computer. Reference numeral 1A-10

denotes a conventional program. Reference numeral 1A-11

denotes the program of the present invention. The

- 20 -

conventional program is contaminated with a virus. Even

when the program of the present invention is contaminated

with a virus, the program according to the present

invention is not contaminated because of unassisted

disinfection by itself. In FIG. 1C, reference numeral

1C-1 denotes a memory area of a computer. Reference

numeral 1C-10 denotes a conventional program. Reference

numeral 1C-11 denotes the program of the present

invention. Reference numeral 1C-2 denotes a virus. The

conventional program is contaminated with a virus.

However, even if the program of the present invention is

contaminated, the program according to the present

invention unassistedly disinfects the contamination by

itself. This means that the program is not overwritten

by the virus. This diagram shows the situations.

[0042]

 As shown in both the figures, the present invention

is according to the following concepts.

(1) The present program in operation allows viral

invasion.

(2) The program of the present invention unassistedly

disables the invading virus by itself in the intervals of

the original operation.

(3) Consequently, according to the present program, even

with presence of the virus, the virus problems become

absent.

- 21 -

(4) Under the current OS, every program stops when

encountering destruction of an instruction; this is also

applied to the present program. The present invention

proposes that a program for automatically performing

continuous restart after emergency stop should be

prepared. This program is called SLP (Soft Landing

Program).

(5) Resultantly, the present program has a scheme that

does not allow occurrence of any viral symptom other than

destruction of an instruction even with viral invasion.

The present invention has also found that when a program

obtains a scheme of creating justified subject genealogy,

the program problems including virus problems are

resultantly solved.

[0043]

 (Necessity of Renaissance)

 As described above, a solution to the program

problems and virus problems is established by a Scenario

Function. The underlying reason of preventing the

Scenario Function from becoming widespread is described

here. The danger of making the program by means of

replacing the program problems with the system

convenience on the basis only of a programming language

has been known as the software crisis since the beginning

of 1970s. However, in reminiscence of the development in

this field for half a century up to the present, the

problems should have been solved by 1990.

- 22 -

[0044]

 Since 1990, the method in this field running away

with the path for returning being lost steadily buries

this field in unresolved problems and makes the state

internally reside. It can be considered that the virus

problems currently shaking the foundation of this field

provide the last chance of normalizing this field. The

present invention regards the virus problem as the

problems of program structure, and provides a simple and

clear solution thereto. The way of solution can be

considered to clarify what this field has overlooked.

[0045]

 The way of creating programs in this quarter-century

after 1990s during which programs have ascertained only

in view of programming languages has ironically allowed

computer products to be significantly widespread. It

should however be said that the underside is filled with

inconsistency. The biggest problem thereof is the fact

that no expert has been developed. For example, the

widespread irrational argument that the virus problems

are solved by prevention before invasion is a proof

thereof.

[0046]

 In view of another aspect, in consideration that

programs are descried matter, the creation method

(methodology) is indispensable to create the programs.

It should be also noticed that the program description

- 23 -

method is established based only on a program having the

duplicability. However, as long as insufficient

development in human resources and a logic connection-

type program are adopted as the basics, paradigm shift of

this field to a paradigm where such recognition is

reached is considered to be difficult. That is, a

fatalistic defect that the meaning of a logic connection-

type description method cannot be ascertained should also

be noticed. This problem also results in a situation

where even if the problem is allowable in another field,

increase in the number of programs causes a serious

situation that cannot be disregarded.

[0047]

 Meanwhile, because of this defect of the logic

connection-type program, it should also be noticed that

the same creation method becomes widespread even with the

difference in religion, thought and institutional systems.

Consequently, it can be understood that only with

programs, their defects have created in the scale of

human beings as apparent in the virus problem. Such

widespread use of programs in the scale of human beings

resultantly causes a crisis in the scale of human beings.

To avoid this problem, a self vaccine for revolution of

consciousness is required. With this regard, a

Renaissance reform is required to be demonstrated for the

way of creating programs.

[0048]

- 24 -

 (Overview of resolution to problems according to

present application)

 In the present application, as to contamination of a

data area for a program in operation caused by a virus

invading the program, replacement of the program with the

program of the present invention (hereinafter also called

"the present program") allows the present program to

regard the contamination as predicate inconsistency

occurring in execution and thus to detect automatically

contamination at any spot pertaining to the present

program, and to eliminate to automatically the

contamination, thereby continuing the original operation

of the present program. The definition structure of the

present program described above is a resolution to the

problems specific to the present application.

[0049]

 In consideration of legitimacy evaluation of vectors

observed without exception in a first rule of each of all

the vectors which are configuration elements of the

present program and legitimacy evaluation of subjects

observed without exception in a third rule, engagement of

viral contamination causes predicate inconsistency in

these evaluations. A scheme of detecting the predicate

inconsistency is a resolution to problems specific to the

present application.

[0050]

- 25 -

 Furthermore, a scheme of autonomously initializing a

contaminated spot of the present program and

automatically removing the contamination (also called

"virus watching algorithm") is a resolution to problems

specific to the present application.

[0051]

 More fundamentally, a scheme which serves as the

basis of the present program and actualizes the finding

pertaining to the perception that programs are subject

genealogies, that is, the Scenario Function, also

constitutes the resolution to problems specific to the

present application.

[0052]

 The universal scheme (including Coordinate Functions,

and Synchronization Functions) that determines the

subject genealogy (FIG. 12) and is cannot be imagined as

the extension of conventional programs constitutes the

resolution to problems specific to the present

application.

[0053]

 Furthermore, in view that the present program is the

scheme of generating justified subject genealogy, as a

result, the present program results in the scheme of

solving the virus problems with being provided with no

virus information at all.

[0054]

- 26 -

 The present program is effective not only to a

program that is a specific part of a computer system but

also to any programs in all the fields.

[0055]

 (Specific resolution to problems according to

present application)

 Specifically, to resolve the above problems, an

autonomous virus solution program according to the

present invention includes: a contamination detection

mechanism for unassistedly detecting contamination in

case a predetermined memory area for a program in an

execution state is contaminated with anti-intent

information against intent on the program because of any

reason; a decontamination mechanism for unassistedly

disinfecting the contamination detected by the

contamination detection mechanism; and a normal state

recovery mechanism for causing the memory area to recover

a normal state automatically.

[0056]

 Here, the "contamination" is every action that

changes information against an original intent, in a

memory area for the program, and is a concept that

includes modes of forgery, rewriting, and destruction.

[0057]

 According to adoption of such a configuration, even

in case external data or an instructive statement

including an originally undesirable computer virus invade

- 27 -

the memory area, the present invention regards the

invasion as the contamination of the memory area instead

of the virus problems, and the contaminated memory area

is autonomously disinfected immediately upon the invasion

is ascertained.

[0058]

 In this case, the contamination detection mechanism

may have a structure that finds logical inconsistency

related to the first information area. This structure

can replace computer virus invasion that is a situation

having a limitation by a pattern recognition method with

an algorithm capable of objectively ascertaining without

exception. In this case, it is preferred that the

contamination detection mechanism have a structure of a

vector that includes first to seventh rules.

[0059]

 Furthermore, in the above case, the decontamination

mechanism may include an initialization mechanism for

initializing the vector. More specifically, the

decontamination mechanism may initialize the vector at

timing before appearance of a symptom intended and caused

by the anti-intent information with which the

contamination is ascertained. According to this

structure, the data area having a possibility of viral

contamination, such as invasion of a computer virus, is

autonomously and automatically initialized. Consequently,

- 28 -

an occasion on which the virus performs so-called

"wrongdoing" can be prevented from occurring.

[0060]

 Also in this case, more specifically, the

decontamination mechanism may initialize the vector at

timing before appearance of a symptom intended and caused

by the anti-intent information with which the

contamination is ascertained. Thus, the virus is

disinfected before occurrence of the opportunity of

virus's performing so-called "wrongdoing". Consequently,

the computer virus invasion problem itself can be

eliminated.

[0061]

 Furthermore, the vector may have a structure that

adds optimal timing to the contamination detection

mechanism and/or the decontamination mechanism.

[0062]

 Furthermore, the normal state recovery mechanism may

have a restart mechanism that is established in the

program.

[0063]

 Moreover, the vector pertaining to the contamination

detection mechanism may include at least a second flag

that indicates passage through the second rule, a sixth

flag for requesting restart of the vector itself, a

seventh flag for declaring a temporary stop of the

restart of the vector itself, and a fourth area that is

- 29 -

an area evaluated by the third rule and determined by the

fourth rule, and the contamination detection mechanism

may include a three-type flags and fourth region relative

relationship evaluating mechanism that evaluates relative

relationship between the second, sixth and seventh flags

and the fourth area.

[0064]

 Furthermore, the structure may include a fourth area

genealogy legitimacy evaluating mechanism for evaluating

legitimacy of genealogy of the fourth area in order to

evaluate the legitimacy of the fourth area by the third

rule of the vector. According to this configuration, a

scheme 12 and a scheme 5 are schemes that evaluate the

reasonableness of the fourth area, but have different

evaluation timing. Consequently, the schemes of

evaluation cannot be configured to be the same.

[0065]

 Furthermore, the structure may further include a

fourth area genealogy achievement prediction mechanism

that performs future prediction of achievement of

genealogy of the fourth area using a stack of the number

of achievements in the fourth area according to the fifth

rule pertaining to the vector.

[0066]

 Furthermore, the structure may include an

instruction contamination detection mechanism that

- 30 -

detects instruction contamination that cannot be detected

by an OS pertaining to the program.

[0067]

 Moreover, to solve the above problems, a definition

structure of a program according to the present invention

is a definition structure of an autonomous virus solution

program for solving, as a program structure, a problem

which a virus invading an operation program started on an

OS (operating system) or a data area pertaining to the

operation program can cause, the definition structure

includes: a Coordinate Function-4 that has a structure

cycling until a critical state of a Palette-4 where

vector structures are accumulated in any order is

achieved, the vector structure being a minimum predicate

structure for determining content for a data area serving

as a subject; a Coordinate Function-2 that has a

structure cycling until a critical state of a Palette-2

where vector structures are accumulated in any order is

achieved, the vector structure being a minimum predicate

structure for determining content for a data area serving

as a subject, a Coordinate Function-3 that has a

structure cycling until a critical state of a Palette-3

where vector structures are accumulated in any order is

achieved, the vector structure being a minimum predicate

structure for determining content for a data area serving

as a subject, a Synchronization Function that causes

control to transition to the Palette-2 when the Palette-4

- 31 -

comes into the critical state, transition to the Palette-

3 when the Palette-2 comes into the critical state, and

transition to any of the Coordinate Function-3 pertaining

to a highest rank, the Coordinate Function-4 pertaining

to an identical rank, and the Coordinate Function-4

pertaining to a layer lower by one layer according to

presence of a fourth area of a variable subject for

establishing the subject when the Palette-3 comes into

the critical state.

[0068]

 According to adoption of such a configuration, even

in case external data or an instructive statement

including an originally undesirable computer virus

invades the first information area, the present invention

operates, on the Scenario Function, the structure that

the virus watching algorithm regards the invasion as the

contamination of the first information area instead of

the virus problems, and invasion of the virus is

autonomously detected.

[0069]

 In this case, the vector may adopt a configuration

that includes: a contamination detection mechanism for

unassistedly detecting contamination in case the data

area is contaminated because of any reason; a

decontamination mechanism for disinfecting the

contamination detected by the contamination detection

mechanism; and a normal state recovery mechanism for

- 32 -

causing the memory area to recover a normal state

automatically. This structure is combined with the

recursive structure of the Scenario Function, which can

replace computer virus invasion that is a situation

having a limitation by a pattern recognition method with

an algorithm capable of objectively ascertaining without

exception.

[0070]

 Furthermore, the vector may have a structure that

adds optimal timing to the contamination detection

mechanism and/or the decontamination mechanism.

[0071]

 Furthermore, the normal state recovery mechanism may

have a restart mechanism that is established in the

program.

[0072]

 Moreover, the vector pertaining to the contamination

detection mechanism may include at least a second flag

that indicates passage through the second rule, a sixth

flag for requesting restart of the vector itself, a

seventh flag for declaring a temporary stop of the

restart of the vector itself, and a fourth area that is

an area evaluated by the third rule and determined by the

fourth rule, and the contamination detection mechanism

may include a three-type flags and fourth region relative

relationship evaluating mechanism that evaluates relative

- 33 -

relationship between the second, sixth and seventh flags

and the fourth area.

[0073]

 Furthermore, the structure may include a fourth area

genealogy legitimacy evaluating mechanism for evaluating

legitimacy of genealogy of the fourth area in order to

evaluate the legitimacy of the fourth area by the third

rule of the vector. According to this configuration, a

scheme 12 and a scheme 5 are schemes that evaluate the

reasonableness of the fourth area, but have different

evaluation timing. Consequently, the schemes of

evaluation cannot be configured to be the same.

[0074]

 Furthermore, the structure may further include a

fourth area genealogy achievement prediction mechanism

that performs future prediction of achievement of

genealogy of the fourth area using a stack of the number

of achievements in the fourth area according to the fifth

rule pertaining to the vector.

[0075]

 Furthermore, the structure may include an

instruction contamination detection mechanism that

detects instruction contamination that cannot be detected

by an OS pertaining to the program.

[0076]

 According to the present application having such a

configuration, computer virus invasion that is a

- 34 -

situation having a limitation by a pattern recognition

method can be replaced with an algorithm capable of

objectively ascertaining without exception, and the data

area having a possibility of viral contamination, such as

invasion of a computer virus, is autonomously and

automatically initialized. Consequently, an occasion on

which the virus performs so-called "wrongdoing" can be

prevented from occurring.

[0077]

 In the above case, when the virus watching algorithm

initializes the data area having a possibility of virus

invasion, the algorithm can initialize the data area at

timing before appearance of a symptom intended by the

virus estimated to have invaded. Thus, the virus is

disinfected before occurrence of the opportunity for the

virus to perform so-called "wrongdoing". Consequently,

the computer virus invasion problem itself can be

eliminated.

[0078]

 The technical thought according to the invention of

the present application described above can be

implemented not only as the definition structure of the

autonomous virus solution program as described above, but

also as any of an autonomous virus solution program, an

autonomous virus solution device, and an autonomous virus

solution method which include substantially analogous

- 35 -

invention identifying elements, and a storage medium that

stores such a program.

[0079]

 The present invention provides an intrinsic solution

to virus problems. That is, even if a virus invades a

program in operation according to the present invention

(hereinafter also called " the present program"),

regardless of the timing and means of invasion and the

number of attempts thereof, the present program

autonomously detects the virus as contamination of a

memory area used by the present program and disinfects

the contamination for quick recovery in order to continue

the normal operation of the present program.

[0080]

 The present program regards contamination (virus) as

false information against the intent of the present

program. The present program has the scheme where

presence of false information causes predicate

inconsistency in this program. The present program

detects contamination using this scheme. In addition,

the present program does not treat an invading virus as a

virus, but treats the virus by the scheme of predicate

inconsistency occurring in the present program according

to the present invention instead. The present program

then disinfects the contamination using a scheme in

accordance with the present invention. The disinfection

- 36 -

has the same meaning as destruction of the intent of an

invading virus.

[0081]

 Timing for detecting contamination and timing for

disinfecting the contamination are timing according to

the present invention. Consequently, the invading virus

is disabled before occurrence of the intended symptoms of

the virus. That is, based on the present program, viral

invasion problems and viral symptom problems are not

solved as virus problems. The present program is a

scheme of preventing the virus problems from occurring in

the present program even with viral invasion. The scheme

of the present program thus serves as a solution to the

virus problems.

[0082]

 Consequently, this frees these industries from the

virus problems causing trouble to the industries, at a

stroke.

Brief Description of the Drawings [0083]

 FIG. 1A is a conceptual diagram showing advantageous

effects of a program according to one embodiment of the

present invention.

 FIG. 1B is a conceptual diagram showing procedures

of deriving the program of the present invention from a

conventional program.

- 37 -

 FIG. 1C is a conceptual diagram showing advantageous

effects of the present program according to one

embodiment of the present invention.

 FIG. 1D is a diagram showing an established main

concept in a research process of the present invention.

 FIG. 1E is a diagram of comparative analysis between

an establishment trajectory (left side) of nouns in a

conventional program according to program dynamic

analysis and an establishment trajectory (right side) of

nouns in a program according to a Scenario Function of

the present application.

 FIG. 2 is a diagram showing types of vectors used by

the present program according to one embodiment of the

present invention.

 FIG. 3 is a conceptual diagram of vectors

established with seven rules and four exits according to

one embodiment of the present invention.

 FIG. 4A is a conceptual diagram of vectors for the

present program according to one embodiment of the

present invention.

 FIG. 4B is a diagram showing the relative

relationship of a fourth area, a second flag, a sixth

flag and a seventh flag for ascertaining the legitimacy

of vectors used by the present program according to one

embodiment of the present invention.

- 38 -

 FIG. 5 is a conceptual diagram of a virus watching

algorithm according to one embodiment of the present

invention.

 FIG. 6 is a diagram showing a stack structure of the

number of established subjects used by the present

program according to one embodiment of the present

invention.

 FIG. 7 is a basic conceptual diagram of three types

of Coordinate Functions according to one embodiment of

the present invention.

 FIG. 8 is a conceptual diagram of Synchronization

Functions according to one embodiment of the present

invention.

 FIG. 9 is a conceptual diagram of three types of

rank structures of the present program according to one

embodiment of the present invention.

 FIG. 10 is a flowchart of a part of a conventional

program (logic connection type) exemplified as an

exemplary case.

 FIG. 11A is a diagram showing a left side of a part

of a frame defined as a LYEE Space according to one

embodiment of the present invention with respect to the

example exemplified in FIG. 10.

 FIG. 11B is a diagram showing a right side of a part

of a frame defined as a LYEE Space according to one

embodiment of the present invention with respect to the

example exemplified in FIG. 10.

- 39 -

 FIG. 12 is a diagram showing a scheme of meaning

according to one embodiment of the present invention with

respect to the example exemplified in FIG. 10.

 FIG. 13 is a diagram for showing the present program

at a position in the rank structure of the present

program to which subjects belonging to the present

program according to one embodiment of the present

invention belong.

 FIG. 14 is an overall structure diagram showing a

mode allowing the present program to be mounted according

to one embodiment of the present invention.

Detailed Description of the Invention

[0084]

 Embodiments of the present invention are hereinafter

described with reference to the drawings. A range

required for description for achieving the object of the

present invention is schematically described below. The

range required for a description of the part concerned in

the present invention is mainly described. Parts which

are not described are according to publicly known

techniques.

[0085]

 (Derivation of establishment of present invention)

 The conventional programs are based on the logic

connection-type description method, which is the reason

that the completeness of the programs cannot be

- 40 -

established. However, the logic connection-type

description method is a custom we inherently have. Thus,

the way the programs are internally has many programs as

seen in the program problems. There is a problem in that

the familiarity of the description method is an implicit

premise of allowing these problems.

[0086]

 Here, an axiom reached as a premise in order to

describe a universal structure of a program achieved by

the present invention, "structure of establishing

meaning" is described. Subsequently, a concept achieved

by the present application as a scheme of deriving

meaning on the basis of the axiom of the structure of

meaning is described. A resolution to the direct

problems of the present application, how to disable a

virus, is described on the basis of the concept.

[0087]

 (Concept of meaning)

 Meaning is wholeness (connotational scene). We, who

are natural existences, are parts. Consequently, even

though we have words "meaning" and "wholeness", the

connotational scene of the entity cannot be described as

our memories. What we can do is limited to genealogize

(logicalize) from parts and imagine the meaning and

wholeness associatively.

[0088]

 (Where meaning resides)

- 41 -

 It is assumed that meaning resides in our minds.

[0089]

 (Scheme of meaning)

 The scheme of meaning is a solution (S) of a

Scenario Function. The scheme of meaning is a model of

meaning existing in our minds. The Scenario Function

establishes the genealogy for a subject according to the

dynamics (data connection) of this function. This is the

model of meaning (see FIG. 12). The genealogy for a

subject is more similar to the concept of wholeness than

the logic. Because of the characteristics, the genealogy

for a subject is called the scheme of meaning.

[0090]

 The scheme of meaning is the genealogy of a fourth

area (subject) of five types of vectors L4, L2, L3, R2

and W4 of the Scenario Function. The scheme of meaning

is newly regarded so as to be recognizable to us who have

the logic connection-type thinking method. The scheme of

meaning can be obtained by converting the Scenario

Function into a logic connection-type program, obtaining

the LYEE Space (FIGS. 11A and 11B) and inputting LYEE

into a graphically representing tool. Technically, the

scheme of meaning can be obtained from a

metalinguistically represented unit statement. The

metalinguistically represented unit statement can be seen

in the LYEE Space. The graphically representing tool has

already been on the market. The algorithm of

- 42 -

automatically converting a Scenario Function into a logic

connection-type program has already been obtained in the

research of the present invention. The algorithm of

automatically obtaining the LYEE Space from the logic

connection-type program has already been obtained in the

research of the present invention. The way of the scheme

of meaning is described according to a scheme of meaning

(FIG. 12) obtained from a partial example of a logic

connection-type program (FIG. 10). The LYEE Space of the

partial example (FIG. 10) is identified with reference to

FIGS. 11A and 11B.

[0091]

 (Structure of scheme of meaning)

 The dynamics of the conventional program, that is,

the trajectory of execution of an instruction with an

area being regarded as a node has so-called a spaghetti

form. Meanwhile, the dynamics of the Scenario Function

has a comb form. According to the genealogy for a

subject, both have the same scheme of meaning. This is

the characteristics of the scheme of meaning. The scheme

of meaning is used for the discussion of identifying how

far the effect of possible contamination of a subject and

a constant value with a virus reaches and in order to

limit the disabling range of contamination. Consequently,

disablement of the contamination of the constant value,

subject, and variable subject can obtain a result that

- 43 -

the contamination problems can be solved. This can be

seen in a program model (described below).

[0092]

 (Path)

 FIG. 12 is a diagram showing the scheme of meaning.

Thick solid lines in FIG. 12 are lines in a flowchart of

FIG. 10. Narrow lines are not shown in the flowchart and

are relation lines that compensate the lines of the

flowchart and represent the scheme of meaning. The

number of lines shown in FIG. 10 (hereinafter also called

"paths") is 20. The number of paths equivalent to that

in FIG. 12 is 22. FIG. 12 has a larger number, 2 of

paths because FIG. 12 has higher strictness. The paths

are established in Harmonization Coordinates.

Consequently, the paths are represented as Harmonization

genealogy. On the other hand, 16 paths appear in FIG. 12.

This path can be ascertained in Metalinguistic

Coordinates. Consequently, this path is represented as

Metalinguistic genealogy. The Metalinguistic genealogy

appears in FIG. 12 but does not appear in FIG. 10. This

is the characteristics of the scheme of meaning

(genealogy for a subject). This is a proof of further

wholeness in FIG. 12 than in FIG. 10.

[0093]

 The Harmonization genealogy is the path of

functional dynamics. However, the Metalinguistic

genealogy is not the path of dynamics. This genealogy is

- 44 -

a path that represents the derivation of a subject, that

is, how the subject has been established. In other words,

this is a path for ascertaining the meaning of the

subject. If the Metalinguistic genealogy does not

reflect intent, for example, if the order of the subject

in the Metalinguistic genealogy does not reflect intent,

a problem occurs in the Harmonization genealogy. In

other words, heretofore, if there is a problem in the

Harmonization genealogy, i.e., the flowchart, we try to

identify the cause of the problem in the Harmonization

genealogy, that is, on the flowchart. However, as we

have experience in a program test, this is not so simple.

Use of the scheme of meaning allows the case of the

problem occurring in the Harmonization genealogy to be

observed as an error of the order of subjects in the

Metalinguistic genealogy. It is difficult to search for

the error of the order of subjects in the Harmonization

genealogy.

[0094]

 (Items of LYEE Space)

 FIG. 10 is a flowchart showing a logic connection-

type program. FIGS. 11A and 11B show a LYEE Space of

this program. The items of LYEE required to obtain the

scheme of meaning are described.

1) The program in FIG. 10 is used as an exemplary case.

2) A statement type is the type of a unitized program

statement structure.

- 45 -

The number of types of unit statements is ten.

3) 12 vector types correspond to the statement types

except the area statement.

4) A subject is the solution of a unit statement.

5) A cooperative statement is a unit statement with no

subject. These constitute a context in view of belonging

to a unit statement having a subject. The context is the

minimum unit of the scheme of meaning.

[0095]

 (Harmonization Coordinate)

6) A line number is a position of a unit statement in the

program.

7) Harmonization Coordinates are six types of coordinates

for ascertaining situations of execution of a unit

statement.

a. TCX is the position of a unit statement in the program

and operates in cooperation with the line number.

b. TCY is TCX of the unit statement where the unit

statement unconditionally advances to the next.

c. TCZ1 is TCX of the unit statement that advances to the

next if the unit is true in a conditional statement.

d. TCZ2 is TCX of the unit statement that advances to the

next if the unit is false in a conditional statement.

e. TCZ3 is TCX of the unit statement at the end of the

range covered by the conditional statement.

f. TCZ4 is TCX of the unit statement where the unit

statement of TCZ3 advances to the next.

- 46 -

8) The metalinguistically represented unit statement is a

unit statement having constitution items (the subject,

variable subject, constant value, stationary arrangement,

and indicator) to which Harmonization Coordinates are

added.

[0096]

 (Harmonization genealogy and Metalinguistic

genealogy)

 The unit statements are sequentially ordered

according to the Harmonization Coordinates (FIGS. 11A and

11B). This shows situations equivalent to those of the

flowchart of the program example (FIG. 10). In the

scheme of meaning (FIG. 12), this is represented as

Harmonization genealogy. The unit statement in the

flowchart is replaced with a metalinguistically

represented unit statement in the scheme of meaning. It

can be understood according to the LYEE Space in FIGS.

11A and 11B that Harmonization Coordinates are added to

all the constitution items of the metalinguistically

represented unit statement. The genealogy of the

constitution items is obtained through use thereof. This

is represented as Metalinguistic genealogy. See LYEE

Space (FIGS. 11A and 11B).

[0097]

 For example, in the unit statement G=10 on the line

number 86, the noun serving as the subject is G. 10

thereof is represented as a constant value. This unit

- 47 -

statement is metalinguistically represented as G[86, 11]

= 10[86]. 86 indicates that TCX where the statement

structure is placed is 86. The TCX86 coincides with the

line number 86. There is a statement structure where the

unit statement has multiple functions. In a case of

replacement with multiple unit statements, the statement

structure having the multiple functions have a line

number, and the unitized unit statements have the line

number of the statement structure having the multiple

functions and are assigned branch numbers, which form

TCXs of the respective unit statements. 11 of G[86, 11]

indicates that an area definition statement is placed at

TCX: 11. The area definition statement is omitted from

the LYEE Space. Consequently, the statement cannot be

seen. 10[86] has a constant value of 10. The constant

value of this form has no area on the program.

Consequently, this representation indicates that the

position of TCX: 86 of G[86, 11] is 10.

[0098]

 The unit statement on the line number 98 is C = G -

A. The metalinguistic representation of this unit

statement is C[98, 16] = G[86, 11] - A[, 20]. A[, 20]

does not have TCX of A, which cannot be displayed,

because TCX of A covers 95 and 96 and established one of

them is to be adopted and is unidentified at this stage.

[0099]

- 48 -

 G[86, 11] is used for this unit statement. This

G[86, 11] is derived from TCX: 86. Consequently, in this

case, according to the scheme of meaning, the genealogy

from G[86, 11] of C[98, 16] = G[86, 11] - A[, 20] to G[86,

11] of G[86, 11] = 10[86] is established as

Metalinguistic genealogy.

[0100]

 C[98, 16] of C[98, 16] = G[86, 11] - A[, 20] is used

in [100,] IF(B[99, 17] + C[98, 16]) < 0. That is, C[98,

16] of [100,]IF is derived from TCX: 98. Consequently,

in this case, according to the scheme of meaning, the

genealogy from C[98, 16] of [100,] IF(B[99, 17] + C[98,

16]) < 0 to C[98, 16] of C[98, 16] = G[86, 11] - A[, 20]

is established as Metalinguistic genealogy. [100,] IF

indicates the placement at TCX: 100. Since IF is not a

subject, the area thereof does not exist. Consequently,

this is represented as [100,]IF.

[0101]

 (Guidance of scheme of meaning)

 As described above, the scheme of meaning, that is

the genealogy for noun, can be generated using the

coordinates. Consequently, irrespective of a

conventional program or the present program, a noun

belonging to the program can be comprehensively

ascertained as a subject. As described above, "as a

subject" means that the noun is genealogized by means of

the Harmonization Coordinate and Metalinguistic

- 49 -

Coordinate. That is, in consideration only that these

coordinates ascertain the relationship of subjectifying

the noun, even if the noun is genealogize in these

coordinates, this means the genealogization as the

subject. This is the point of the scheme of meaning.

[0102]

 In the present invention, the Harmonization

Coordinate and Metalinguistic Coordinate achieve this.

As shown in FIG. 12, the path of Harmonization genealogy

is genealogy of logic connection. This coincides with

the conventional flowchart. Likewise, the Metalinguistic

genealogy is genealogy of data connection. This does not

appear in the conventional flowchart. In the mind of a

person seeing the flowchart, this context appears as the

meaning of the flowchart. In other words, the

Metalinguistic genealogy ascertains the meaning appearing

in the mind.

[0103]

 Various utility values for the scheme of meaning can

be considered.

(1) For example, the establishment relationship where one

subject (noun) is established with other subjects can be

visually identified. The establishment relationship

cannot be completely pictured by people without this

scheme of meaning. In this sense, acquisition of the

scheme of meaning achieves a scene which people visually

identify for the first time.

- 50 -

(2) The order (subject order sequence) in the network

(genealogy) of nouns (subject) of the scheme of meaning

ascertains the establishment and derivation.

Consequently, use of this allows visual observation on

whether the intent of a person having a need is

reasonably ascertained by the program.

(3) The scheme of meaning allows observation on what part

of program is to be tested.

The description on "structure of establishing meaning"

which is the axiom achieved by the present invention as a

premise has thus been completed. Next, the relationship

between the program and the Scenario Function according

to the present invention.

[0104]

 The derivation of establishment of the program

according to the present invention (hereinafter also

called "the present program") is regarded as the data

connection-type description method with respect to the

logic connection-type description method. This

description method is different from our previous

instinctive nature. Consequently, we cannot feel

familiarity with the method. We cannot feel familiarity

with the present program without change in way of

thinking. According to the logic connection-type

description method, the way of tracing genealogy for a

subject is through reuse of knowledge (logic) of

subjectifying a noun. Consequently, a person making

- 51 -

description can recognize the intent even though the

degree is insufficient. On the contrary, according to

the data connection-type description method, the person

making description cannot get recognition without

obtaining the solution of the description (see FIG. 12).

[0105]

 The Scenario Function clearly demonstrates that

people making description are not required to know the

intents. This point allows the present program to serve

as a scheme of establishing the completeness of the

program. Unlike the present program, the conventional

program cannot solve the program problems or the virus

problems. On the contrary, the present program can solve

the program problems and the virus problems. Furthermore,

the present program has the first program structure in

the world in view of capability of describing the basis

universally.

[0106]

 For example, this Description summarizes "scheme for

disabling a virus" into 15 schemes. These are

established only based on the Scenario Function. However,

the conventional programs cannot establish any one of

them. In view of common sense in virus problems, while

the basis is apparent, the basis is also described

"disabling viruses" in this Description. Here, the

Scenario Function, which serves as the basis of the

present program, is required to be ascertained together.

- 52 -

The Scenario Function is described in "definitive

expression of Scenario Function" in this Description.

[0107]

 FIG. 1B is a conceptual diagram showing procedures

of deriving the program of the present invention from a

conventional program. In this diagram, reference numeral

1B-1 denotes the source code of the conventional program,

reference numeral 1B-11 denotes the LYEE Space of the

conventional program (see FIGS. 11A and 11B), and

reference numeral 1B-111 denotes an operation of

extracting an instructive statement ruled by the Subject

Vector from the LYEE Space. Reference numeral 1B-1111

denotes creation of the vector that rules the extracted

instructive statement. Reference numeral 1B-112 is an

operation of extracting the instructive statement ruled

by the L4 Control Vector from the LYEE Space. Reference

numeral 1B-1121 denotes creation of the vector that rules

the extracted instructive statement. Reference numeral

1B-41 denotes that the program model of the Subject

Vectors is attached to this Description. Reference

numeral 1B-42 denotes that the program model of the virus

watching algorithm (VWA) is attached to this Description.

Reference numeral 1B-43 denotes that the program model of

the Control Vectors is attached to this Description.

Reference numeral 1B-44 denotes that the program model of

the three types of Coordinate Functions serving as the

basic program of the program according to the present

- 53 -

invention and Synchronization Function are attached to

this Description. Reference numeral 1B-2 denotes

creation of VWA based on the created vector. Reference

numeral 1B-21 denotes an operation of completing the

Subject Vector using the created VWA. Reference numeral

1B-22 denotes an operation of completing the Control

Vector using the created VWA and the model of the Control

Vector. Reference numeral 1B-23 denotes an operation of

completing the basic program using the model of the basic

program. Reference numeral 1B-3 denotes an operation of

editing the program of the present invention using the

results of 1B-21, 1B-22 and 1B-23 in order to complete

the program of the present invention. This diagram shows

that

(1) the present program is a theory of solving the virus

problem, and

(2) the virus problems can be solved by the program.

[0108]

 Ascertaining the Scenario Function according to the

present invention allows the followings to be recognized.

(1) Artificial definition of one of the seven rules

included in vectors of configuration elements of the

present program, in turn, defines the entire code

constituting the present program.

(2) The above (1) is a proof that the present program is

universal.

- 54 -

(3) The relationship in FIG. 1B is a proof that if the

conventional program exists, the present program also

exits.

(4) The model of the present program attached to this

Description is a proof of the above (1), (2) and (3).

(5) As to the instructive statement determining the

present program, preliminary definition of information

for discriminating the statement type allows automatic

collection from a conventional program using this

definition (see FIGS. 11A and 11B (LYEE Space)).

(6) The instructive statement determining the present

program is used for five types of Subject Vectors that

include L4 Control Vectors in 12 types of vectors

constituting the present program. It is determined which

vector uses which instructive statement, without

exception. This is described in the section on vectors

in this Description.

[0109]

 It should be also noted that the vector functions as

a scheme for determining the instructive statement. When

vectors are determined, the programs called Coordinate

Functions, Synchronization Functions, Control Vectors,

VWAs (virus watching algorithms) which constitute the

present program are determined accordingly. See the

attached description, structure diagram, and program

model. According to such a scheme, the present program:

- 55 -

(1) achieves the same original operation as the

conventional program, and

(2) solves the virus problems in parallel.

Walking through the present program allows the (1) and

(2) roles to be ascertained to have been achieved.

[0110]

 In consideration that the program is the scheme that

subjectifies a noun and traces genealogy for the subject,

the dynamics of the Scenario Function can be understood.

The function of program is nothing but a scheme of

tracing genealogy for a subject. This point is also

applicable to the conventional program. While the

program performs data processing, it can be more

appropriately said that the program generates the subject

genealogy. Consequently, the present invention also

serves as a proof theory of existence of a program of

solving the virus problems.

[0111]

 (Definitive expression of Scenario Function)

 Next, the Scenario Function serving as the basis of

the program is described. The Scenario Function is

nothing more or less than what is called a program of a

computer. In view of the functional role of the program,

the Scenario Function is a program nothing more or less

than the conventional program. The Scenario Function is

represented by the following definitive expression. That

is,

- 56 -

S = 0(4({L4}, {W4}, E41, E42, T4) + 2({L2}, {R2}, T2)

+ 3({L3}, T31, T32, T33))

The Scenario Function is the program structure that can

be determined and represented by the definitive

expression and is the first in the world. Every symbol

on the right hand side is a program derived by the

determinism. The symbols of the definitive expression of

Scenario Function are described below.

[0112]

 (Solution of Scenario Function)

 In the Scenario Function, a concept of solution,

which is not in the conventional program, is established.

The solution (S) of the Scenario Function is not the

execution order of nouns or instructive statements, but

is the situation of data connection of subjects. This is

also called a scheme of meaning (see FIG. 12). The

scheme of meaning is the entire scene of the dynamics of

Scenario Function. A method of obtaining the solution of

the Scenario Function is described in the section of

scheme of meaning. The flowchart of logic up to this

point corresponds to the solution of the Scenario

Function. In the present invention, the entire scene of

dynamics is positioned as an ultimate (extensive)

situation toward the contour of entirety which is assumed

to exist. The vectors, Coordinate Functions and

Synchronization Functions are schemes for extensively

- 57 -

establishing the data connection of subjects serving as

the solution of Scenario Function, to the possible limit.

[0113]

 (Structure of vector)

 FIG. 3 (basic structure of vector) is referred to.

As shown in this diagram, the vectors include seven types

of description rules. These types are represented as

first, second, third, fourth, fifth, sixth and seventh

rules. 3S101 denotes the first rule, where it is

evaluated whether to advance to the second rule or

finishes here. 3S1011 denotes an exit of the first rule.

3S201 denotes the second rule, where a process original

to the vector is executed. 3S301 denotes the third rule,

where evaluation pertaining to the original process for

the vector is executed. 3S401 denotes the fourth rule,

which is the affirmative consequence of the third rule

and where the original process of vector is completed.

3S4011 denotes an exit for completion of the original

process of vector. 3S302 denotes the fifth rule, where

the process is performed as the negative consequence of

the third rule. 3S303 denotes the sixth rule, which is

the affirmative consequence of the fifth rule and where

the vector requires restart. 3S3031 denotes an exit of

the sixth rule. 3S304 denotes the seventh rule, which is

the negative consequence of the fifth rule and where the

vector requires to stop restart. 3S3041 denotes the exit

of the seventh rule.

- 58 -

[0114]

 As shown in this diagram, the start point of vector

is at a single site and is the first rule. The end

points (exits) of the vectors are at four sites, and are

the first, fourth, sixth and seventh rules. The states

of vectors finishing the role at the four end points

(exits) are called the legitimacy of vector (see the

section of vector legitimacy). The vector intrinsically

has two types of flags (the sixth and seventh flags).

The second flag is added for the sake of the present

program that takes measures against viruses. The second

flag represents a proof of passage of the second rule

with own on-state. The sixth flag requests own restart

with own on-state. The seventh flag declares temporary

stop of restart with own on-state. The third, fifth,

sixth and seventh rules of vector are schemes for vector

restart structure (see the section of restart structure).

[0115]

 (Legitimacy of fourth area)

 The fourth area is suggested by an instruction ruled

by the vector. The third rule of vector evaluates the

legitimacy of the fourth area, and when the area is not

legitimate, this rule issues an instruction of advancing

to the fifth rule in order to urge vector restart. The

legitimate fourth area is evaluated by the third rule and

determined by the fourth rule. The legitimate fourth

area means that the fourth area is not contaminated. The

- 59 -

fourth area suggested by the instructive statement ruled

by the vector can be determined to be legitimate if all

the variable subjects related to establishment of this

instructive statement are legitimate. This evaluation is

performed by the third rule. This evaluation is

represented as the legitimacy of the fourth area.

[0116]

 (Structure of vector)

 The legitimate fourth area is the solution of the

vector. The fifth rule of vector determines presence or

absence of possibility of establishing the legitimate

fourth area. The method of evaluation is described later.

The sixth rule of vector declares that the possibility of

establishing the legitimate fourth area is on the same

Coordinate Period (see the section of Coordinate Period).

The seventh rule of vector declares that the possibility

of establishing the legitimate fourth area is absent in

the near future. The first rule of vector evaluates

whether to finish the operation of itself or advance to

the second rule, using its legitimacy. The derivation of

the structure of the vector is described in the book

(program revolution for disabling computer virus) written

by the present inventor. As shown in FIGS. 4A and 5, the

vector of the program according to the present invention

is established by the virus watching algorithm and adding

the second flag as described above.

[0117]

- 60 -

 (Classification of vector)

 The vectors can be classified into the following

three types.

(1) A vector with a solution that is the subject of

instructive statement

(2) A vector with a solution that is the achievement of

the function determined by at least one instructive

statement

(3) A vector with a solution that is the achievement of

the control of the Scenario Function

The above (1) is collectively called the Subject Vector,

and (2) is collectively called the L4 Control Vector, and

(3) is collectively called the Control Vector.

[0118]

 (Types of vector)

 FIG. 2 (types of vectors) is referred to. As shown

in the diagram, the types of vectors are 12 types, or L4,

W4, E41, E42, T4, L2, R2, T2, L3, T31, T32 and T33. L4,

W4, L2, R2 and L3 are Subject Vectors. The Subject

Vector subjectifies a minimal class noun. The minimal

class noun belongs to the unit statement.

[0119]

 (Unit statement)

 Provided that instructive statements are unitized,

any programming language is described with the following

ten types of instructive statements. The unitizing is

reinterpretation of the statement structure into an

- 61 -

instructive statement with one function and one statement

structure. Here, the unitized statement structure is

called the unit statement. The types of unit statements

are ten types, that is, 1. area statement, 2. comment

(stationary arrangement) statement, 3. translation

statement, 4. substitution statement, 5. constant value

statement, 6. conditional statement, 7. input statement,

8. output statement, 9. call statement, and 10. control

statement. The instructive statement ruled by the vector

is the unit statement. The unit statement is ruled by

the vector. The vector is accompanied by tense. Thus,

the unit statement ruled by the vector is assigned tense.

[0120]

 The tense of the unit statement is as follows.

(1) The area statement, comment statement, translation

statement, and control statement are transcendent over

the tense.

(2) The tense of substitution statement, output statement,

and call statement is the "present".

(3) The tense of the constant value statement, and input

statement is the "past".

(4) The tense of the conditional statement is the

"future".

Here, the unit statement with tense has a subject. The

vector ruling the unit statement that establishes the

subject is called the Subject Vector. The fourth area of

the vector is an area accommodating the solution of the

- 62 -

vector. The fourth area of the Subject Vector is also

called the subject. The Scenario Function has intrinsic

Control Vectors E41, E42, T4, T2, T31, T32 and T33.

These are not related to the conventional program.

[0121]

 (Noun, subject, and variable subject)

 The noun is the name of the area. The subject is

the content of the area. The Subject Vector is

identified by assigning the subjectified noun (area name).

Example: L4, noun.

[0122]

 The scheme of subjectifying the noun is determined

by the instructive statement. Thus, according to the

Subject Vector, the instructive statement having the

subject is ruled. The subject of the instructive

statement becomes the solution of the Subject Vector.

The conditional statement has the variable subject, but

does not have any subject. However, the conditional

statement corresponds to the instructive statement having

the subject. Consequently, the conditional statement is

identified as L3, noun, and exits as the Subject Vector.

However, the area of L3, noun becomes the fourth area for

representing the achievement of the conditional statement

by any of on and off.

[0123]

 Reference numerals E41, E42, T4, T2, T31, T32 and

T33 denote the Control Vectors of the Scenario Function.

- 63 -

The Control Vector is identified by assigning the type of

Palette to which it belongs.

Example: the form E41, P4 is achieved.

The L4 Control Vector is the vector that rules the

function achieved by the instructive statement that has

no subject. Identification is made by assigning the

appearance number to the instructive statement typified

by the L4 Control Vector.

[0124]

 (Supplementation to L4 Control Vector)

 In a case where multiple instructive statements

belong to the L4 Control Vector, and a case where the

instructive statement represented in the Subject Vector

belongs to the instructive statement, representation in

the Subject Vector can be achieved. Alternatively, if

the instructive statement has already been represented in

the Subject Vector, at the position of the instructive

statement of the L4 Control Vector, instead of the

instructive statement, evaluation of the achievement of

the fourth area of the instructive statement can be

described. That is, representation can be made such that

the fourth area is on the second flag on sixth flag

on seventh flag on. If this condition is not satisfied,

the instructive statement is not established. That is,

the L4 Control Vector is not established.

[0125]

 (Instructive statement ruled by vector)

- 64 -

 According to the Subject Vector, a single

instructive statement that establishes a subject is ruled.

That is, the substitution statement, constant value

statement, call statement, and input statement are ruled

by the second rule. The conditional statement is ruled

by the third rule. The output statement is ruled by the

fourth rule. There is no vector that rules the control

statement. The area statement is not represented in the

vector. Area information defined by the area statement

is defined in a manner identical to that of the

conventional program, and is basically placed at the head

of the Synchronization Function. The translation

statement is ruled by the L4 Control Vector.

[0126]

 (Supplementation to Control Vector)

 Vector E41 ascertains the end state of the present

program. Vector E42 detects the logical inconsistency.

Vector T4 ascertains the condition of switching the

Coordinate Function-4 to 2. Vector T2 ascertains the

condition of switching the Coordinate Function-2 to 3.

Vector T31 ascertains the condition of switching the

Coordinate Function-3 to the own Coordinate Function-4.

Vector T32 ascertains the condition of switching the

Coordinate Function-3 to the own lower Coordinate

Function-4. Vector T33 ascertains the condition of

switching the Coordinate Function-3 to the own highest

Coordinate Function-3. As shown with reference to FIG. 9

- 65 -

(rank structure of Scenario Function), the own lower and

the highest are concepts established in the rank

structure of the present program.

[0127]

 (Symbol of vector)

 Each numeral part of the respective vector types L4,

W4, E41, E42, T4, L2, R2, T2, L3, T31, T32 and T33

represents the tense in which the vectors exist. "4"

identifies the presence at the present in the tense. "2"

identifies the presence in the past. "3" identifies the

presence in the future. This concept is based on

synchronization of all the types of tense, and is caused

from the hypothesis of this research that the meaning is

established.

[0128]

 (Supplementation to L3 vector)

 L3 is defined for each of cases of true and false.

The corresponding vector is the Subject Vector. The

Subject Vector controls the statement structure that has

the subject. Meanwhile, L3 controls the statement

structure that has no subject. Consequently, the Subject

Vector corresponding to L3 reflects the own subject in L3.

L3 is identified by obtaining the subject.

[0129]

 (Palette)

 The Palette is three types of subset of vectors.

- 66 -

(1) {{L4}, {W4}, E41, E42, T4} are represented as the

Palette-4, P4.

(2) {{L2}, {R2}, T2} are represented as the Palette-2, P2.

(3) {{L3}, T31, T32, T33} are represented as the Palette-

3, P3.

The vectors installed in the Palette-4 are vectors that

rule the instructive statement established at the tense

"present". For example, these are the substitution

statements and the output statements. The vectors

installed in the Palette-2 are vectors that rule the

instructive statement established at the tense "past".

For example, these are the constant value statements and

the input statements. The vectors installed in the

Palette-3 are vectors that rule the instructive statement

established at the tense "future". For example, these

are conditional statements.

[0130]

 (Arrangement of vectors on Palette)

 In the conventional program, the order of

arrangement of instructions should be predetermined

before execution and thus arranged. This is because the

conventional programs are established based on the logic

connection-type thinking method. Meanwhile, in the

Scenario Function, the order of arranging the vectors

belonging to the Palette is freely selected. This is

because the Scenario Function has the scheme of

establishing data connection between the subjects of the

- 67 -

vectors by repetitively executing all the vectors on the

Palette, thereby determining the order of the vectors

gradually. In the structure, repetitive execution

establishes the data connection of the subjects and

derives the scheme of meaning exceeding the flowchart

that is the solution of the Scenario Function (see the

section of scheme of meaning).

[0131]

 (Synchronization Function)

 FIG. 8 (basic structure of Synchronization Function

(0)) is referred to. In this diagram, upon start of the

Synchronization Function, in a case where the number of

established subjects and the number of the value of a

restart counter is zero, this is the initial start.

Consequently, the stack structure of the number of

established subjects is initialized. In cases other than

the initial start, 8S101 does not initialize this stack.

As to the stack structure of the number of established

subjects, see FIG. 6. In 8S201, the achievement of the

Control Vector E41 is verified. Reference numeral E41

denotes a vector for telling that the present program is

in the end state. When E41 is established, the

Synchronization Function starts a program (SEP) of

performing finish procedures. When E41 is not

established, the Synchronization Function performs

evaluation for starting the Coordinate Function to be

ruled. In 8S301, the achievement of the Control Vector

- 68 -

T31 is verified. In a case where T31 is established, T31

is initialized and the ruling Coordinate Function-4 is

started in 8S302. In a case where T31 is not established,

the achievement of the Control Vector T4 is verified in

8S401. In a case where T4 is established, T4 is

initialized and the ruling Coordinate Function-2 is

started in 8S402. In a case where T4 is not established,

the achievement of the Control Vector T2 is verified in

8S501. In a case where T2 is established, T2 is

initialized and the ruling Coordinate Function-3 is

started in 8S502. In a case where T2 is not established,

the achievement of the Control Vector T32 is verified in

8S601. In a case where T32 is established, T32 is

initialized and the ruling Coordinate Function-4 of the

present program residing immediately therebelow is

started in 8S6011 and the process if finished. In a case

where T32 is not established, the achievement of the

Control Vector T33 is verified in 8S603. In a case where

T33 is established, T33 is initialized and the ruling

Coordinate Function-3 of the present program residing at

its highest position in 8S6021 is started and the process

is finished. In a case where T33 is not established, the

own Coordinate Function-4 is started in 8S603.

[0132]

 As shown in FIG. 8, the Scenario Function has one

Synchronization Function. The Synchronization Function

is the highest control logic in the Scenario Function.

- 69 -

The Synchronization Function rules three types of

Coordinate Functions. The Synchronization Function is a

restart structure. The restart structure of the

Synchronization Function establishes the synchronous

period. The area definition statement used by the

Scenario Function is placed in the Synchronization

Function.

[0133]

 (Coordinate Function)

 FIG. 7 (basic structure of Coordinate Function (4,

2, 3)) is referred to. In this diagram, upon being

started by the Synchronization Function, 7S101 verifies

an instruction destroying signal, the signal being

detected by OS. 7S1201 starts the program (SLP) prepared

for stopping this system when the instruction destroying

signal is detected. When the instruction has not been

destroyed, 7S201 designates the vector with the first

installation order installed on the Palette determined by

the Coordinate Function. The installation order of

vectors does not necessarily conform to any rule. This

is a start point of the Coordinate Period. In 7S301, the

designated vector is started. In 7S401, upon return of

the started vector, this Coordinate Function verifies the

instruction destroying signal detected by the OS. When

the instruction destroying signal is detected, SLP is

started. In 7S501, because of absence of destruction of

the instruction, the installation order of vector is

- 70 -

updated by one. In 7S601, it is verified whether the

updated installation order exceeds the number of

installed vectors. If the number of installed vectors

are not exceeded, the vector with the designated order is

started in 7S301. 7S701 denotes a process in a case

where the number of installed vectors is exceeded. It is

herein verified whether there is any vector with the

sixth flag being on. If there is any vector with the

sixth flag being on, this Palette does not reach a

critical state. Consequently, it is required to restart

the vectors installed on the Palette from the vector with

the first installation order. In this case, the restart

counter is updated in 7S701 and the process transitions

to 7S201. In 7S701, if there is no vector with the sixth

flag being on, the Palette has reached the critical state.

This state indicates the end of the Coordinate Period of

the Coordinate Function. In 7S801, the seventh flag is

entirely turned off. This is in order not to impede the

possibility of establishment of the fourth area, because

the possibility is present in the next Coordinate Period.

In 7S901 the stack of the number of established subjects

is updated. In 7S1001, the achievement of the Control

Vector E42 is verified. E42 is for detecting instruction

overwriting contamination which cannot be detected by the

OS. In a case of establishment, this Coordinate Function

starts SLP. In a case without establishment of E42, the

- 71 -

control of this Coordinate Function is returned to the

Synchronization Function in 7S1101.

[0134]

 As shown in FIG. 7, the Scenario Function has three

Coordinate Functions. The three Coordinate Functions (4,

2, 3) are isomorphic except the ruling Palettes. The

Coordinate Function rules the vectors belonging to the

Palette. The Coordinate Function is a scheme of

establishing the synchronization of the subjects in the

Palette. The Coordinate Function is a restart structure.

In the restart structure of the Coordinate Function, the

Coordinate Period is established. As shown with

reference to FIG. 6 (stack structure), the Coordinate

Period is timing for determining the stack structure of

the number of established subjects.

[0135]

 (Principle of virus solving scheme of the present

program)

 To allow the program to solve viral contamination by

itself, the program is required to include the following

schemes.

(1) Scheme of detecting viral contamination during

execution

(2) Scheme of disinfection

(3) Scheme of restart after disinfection

[0136]

- 72 -

 In a case where the program has the restart

structure, the contaminated area is disinfected by

initialization. As is understood from the Scenario

Function, the Scenario Function has the restart structure

such as restart from the beginning according to the

present program. Consequently, disinfection is achieved

by initializing a contaminated area with the definition

attribute. This restart structure is a scheme

established by establishment of the dynamics of the

Scenario Function as the data connection type. The

dynamics of the conventional program is established by

logic connection. Consequently, unlike the Scenario

Function that establishes a structure of restart on an

area-by-area basis, the dynamics cannot establish such a

structure. In the present program, the viral

contamination is resultantly detected as structural

predicate inconsistency occurring in the present program

(see vector legitimacy, and fourth area legitimacy).

[0137]

 Consequently, the present program can solve the

virus problems without using the viral information at all

(see disabling viruses). In addition, it should be noted

that the virus problems cannot be solved using viral

information. This is because the more the knowledge of

software crisis is obtained, the more the resolution

thereto becomes complicated, resultantly an unrelated

programming language is delegated and solution is

- 73 -

abandoned, and, as such, as detailed knowledge of viruses

is obtained, the resolution becomes clinical and does not

reach the solution. In other words, acquisition of

detailed knowledge and problem solving become problems

different from each other in many cases. Consequently,

the idea of resolving the virus problems utilizing virus

creators only complicates the situations. In other words,

widespread use of programming languages intending to

improve the coding rate for the sake of resolving the

software crisis using the programming languages has

facilitated the superficial convenience of programming

languages, which cannot alleviate the software crisis but

further complicates the situation; we cannot help

pointing out this is the history heretofore.

[0138]

 The description method is ruling that places

limitation on the programming language (grammar). What

should be described here is that the programming language

and the description method has concepts which are similar

but different from each other. The ruling of this

limitation is determined by the program structure. The

program structure that ultimately establishes

universality against many limitations by the programming

language solves the program problems and virus problems.

The concept of description method transcending the

programming language grammar has been obtained by the

present inventor's original dynamic analysis for 15 years.

- 74 -

This concept is reflected in the Scenario Function

according to the present application. With reference to

the model of the present program, it can be considered

that presence of a predicate sense even in the simplicity

can be noticed. What demonstrates that change in program

structure can achieve the solution is the Scenario

Function.

[0139]

 Only a single type of ordinary virus has a power of

destroying a computer system. Consequently, even a

single virus cannot be allowed to invade the program.

This is the "absolute requirement of solving virus

problems". Thus, the solution to the virus problems

cannot be achieved only by an idea. That is, it can be

said that without finding of the principle of solving

method, the virus problems cannot be solved. The subject

(fourth area) variously changes during execution even

though the subject is the same. Consequently, evaluation

on whether the subject is contaminated is performed only

in execution. Presence or absence of contamination

cannot be ascertained even by observing only the subject.

It cannot be mechanically evaluated whether the subject

is contaminated without observing the appropriateness of

subject establishment process.

[0140]

 The vector has universal flags (sixth and seventh

flags). The flags serve as the basis of the scheme of

- 75 -

detecting the predicate inconsistency of the subject.

The two types of flags and a third one, which is a second

flag, added thereto allow the appropriateness of

establishment process of the subject to be evaluated

according to the presence or absence of the fourth area

(subject) and the relative relationship of the three

types of flags. This scheme is the principle of the

scheme of the present program that mechanically evaluates

the viral contamination of the subject. The second flag

is thus added to the Scenario Function in order to

ascertain the timing of the subject. If the timing of

establishment of the subject is unknown, the

contamination of the subject cannot be detected. The

scheme of ascertaining the appropriateness of the

establishment process of the subject according to the

program of the present invention is established by the

third rule of the vector.

[0141]

 (Axiom of solving virus problem)

 According to the present invention, the virus

problems are consistently ascertained as a phenomenon

that is caused by the incompleteness of dynamics of the

conventional program. The present invention is based on

recognition that the incompleteness of the definition of

source code of the logic connection-type program which

has been to be reformed at the stage of the software

crisis in 1973 and the incompleteness of the dynamics

- 76 -

thereof has increased the convenience of computer systems

without actual improvement in the state as it has been,

and consequently, the virus problems occur with the

programs serving as a hotbed. It is apparent that the

method that is taken by current products against viruses

and places a defensive barrier for blocking occurrence of

a viral symptom before a medium to be invaded basically

has a fault and dose not solve the virus problems; this

method thus has a problem.

[0142]

 As described above, there are theoretically virus

invasion windows as many as the number of instructive

statements. Consequently, the idea of blocking viruses

before the media to be invaded can only be described to

be unimaginable as an attitude of seriously solving the

problems. In other words, we cannot help pointing out

that the business method in this field heretofore that

gains the source of business without solving the problems

is also applied to the virus problems without regret.

The present application opposite to such a method can

make an axiom to simplify and solve the virus problems,

which is described later.

(1) Viral contamination is detected as the predicate

inconsistency of an invaded medium.

(2) Solving the contamination of the invaded medium

eliminates the virus problems.

[0143]

- 77 -

 (Supplementation to axiom)

 According to the axiom 1, in order to solve the

virus problems, it is required to allow the virus to

invade the medium to be invaded, and contaminate the

invaded medium. The axiom 1 means that the viral

invasion method can be eliminated from the virus problems.

The predicate inconsistency occurring in the invaded

medium is determined according to the structure of the

invaded medium. Thus, the predicate inconsistency of the

invaded medium can be detected irrespective of the virus.

Meanwhile, the axiom 2 is a necessary consequence from

the scheme of the virus. The disabling viruses make the

presence of viruses meaningless.

[0144]

 (Structure of the present program)

 The vector for the present program is replaced from

that in FIG. 3 to that in FIG. 4A. In FIG. 4A, the virus

watching algorithm (FIG. 5) is used. In FIG. 4A, 4AS101

denotes the virus watching algorithm (VWA) attached to

the vector. 4AS201 denotes the first rule of vector,

where the reasonableness of the vector is evaluated. As

to the evaluation of the reasonableness of the vector,

see FIG. 4B (described later). 4AS2011 denotes the exit

of the first rule. 4AS301 denotes the second rule of

vector, where the second flag is set to on. The

instructive statement ruled by the second rule is placed

here. 4AS401 denotes the third rule of vector, where the

- 78 -

reasonableness of the fourth area is evaluated. 4AS501

denotes the fourth rule, where if the evaluation of the

third rule is affirmative, the subject obtained by the

instructive statement ruled by the vector is moved to the

fourth area together with the restart counter at the time

of obtainment. The sixth flag is turned off. 4AS5011

denotes the exit of the fourth rule. 4AS402 denotes the

fifth rule of the vector. When the evaluation of the

third rule is negative, the presence or absence of

possibility of affirmative evaluation of the fifth rule

is determined. The stack structure of the number of

established subjects is used for this evaluation. Here,

the fourth area is initialized. 4AS403 denotes the sixth

rule, where if there is a possibility in the fifth rule,

the sixth flag is turned on and the second flag is turned

off here in order to request the vector restart. 4AS4031

denotes the exit of the sixth rule. 4AS404 denotes the

seventh rule, where if there is no possibility in the

fifth rule, the seventh flag is turned on and the second

flag is turned off here in order to stop the vector

restart. 4AS4041 denotes the exit of the seventh rule.

If the supplementary measures such as a service message

is required, the sixth and seventh rules can adopt the

measures. In 4AS601, one is added to the counter of the

number of established subjects. In 4AS701, the value of

the restart counter is held.

[0145]

- 79 -

 FIG. 4B shows the relative relationship of the

fourth area, the second flag, the sixth flag and the

seventh flag for ascertaining the legitimacy of vectors

used by the present program. This relativity is obtained

as the state of the vector at the exits 2, 3 and 4 of the

vector.

[0146]

 FIG. 5 is a conceptual diagram of a virus watching

algorithm according to one embodiment of the present

invention. In this diagram, in 5S101, the presence or

absence of contamination of the second flag is observed.

In 5S201, the presence or absence of contamination of the

sixth flag is observed. In 5S301, the presence or

absence of contamination of the seventh flag is observed.

In 5S401, the presence or absence of contamination of the

fourth area is observed. In 5S501, if any one of the

above items is contaminated, the vector is initialized.

5S5011 decrements the counter of the number of

established subjects by one. 5S901 denotes the end exit

of this VWA. In 5S601, the presence or absence of the

contamination of the counter of the number of established

subjects is observed. In 5S701, the presence or absence

of the contamination of the restart counter is observed.

In 5S801, because of the contamination incapable of being

addressed by vector initialization, the program (SLP)

prepared to stop this system is started.

[0147]

- 80 -

 The three types of Coordinate Functions are

basically those in FIG. 7. Here, a single counter of the

number of established subjects is provided for the

present program. The present program conforms to the

definitive expression of Scenario Function. It is

apparent that the definition structure of the present

program is different from the conventional program.

Consequently, the present invention results in the

precise structure theory of the program.

[0148]

 (Supplementation to vector legitimacy)

 In consideration of restart of the vector by the

Coordinate Function, the requirements for satisfying the

vector legitimacy are that the vector has passed any of

the own exits 2, 3 and 4 and that the vector is in the

state of being initialized by the virus watching

algorithm (VWA). Incidentally, the state of the exit 3

is the same as the exit state of VWA (see FIGS. 3 and 5).

The vector legitimacy serves as the evaluation condition

at the first rule on whether to advance to the second

rule. This condition is defined as follows.

[0149]

 (Relativity of fourth area and three types of flags)

 Universal relativity is established between the

fourth area and the three types of flags (see FIG. 4B).

The vector legitimacy is this relativity.

- 81 -

(1) The state of the vector initialized by VWA is the

same as the state of the exit 3.

In this case, the vector advances to the second rule.

(2) The state of the vector at the exit 2 is

(fourth area on second flag on sixth flag off

seventh flag off).

In this state, the vector restarted through VWA is

returned by the first rule.

(3) The state of the vector at the exit 3 is

(fourth area off second flag off sixth flag on

seventh flag off).

In this state, the vector restarted through VWA advances

to the second rule.

(4) The state of the vector at the exit 4 is

(fourth area off second flag off sixth flag off

seventh flag on).

In this state, the vector restarted through VWA is

returned by the first rule.

Because the vector legitimacy and the fourth area

legitimacy have different meaning, it should be noted

that the legitimacies should not be confused. The fourth

area legitimacy is used for the third rule. The vector

legitimacy is used for the first rule.

[0150]

 (Structure of vector supporting viral contamination)

 The vector observes, through the own third rule,

whether the subjects of all the variable subjects

- 82 -

pertaining to the establishment of the own fourth area

are established without contamination, in order to

establish the own fourth area legitimately. If any one

of the subjects of the variable subjects is contaminated,

establishment of the own fourth area is given up and

advances to the fifth rule. The fifth rule verifies the

possibility of establishment of the legitimate subject in

the near future by a special method that uses change in

the number of established subjects. See the section on

the stack of the number of established subjects.

[0151]

 (Solution to contamination in fourth area)

 In case the flag is contaminated, VWA initializes

the vector, and performs restart using the restart scheme

of the present program so as to obtain the legitimate

fourth area again. However, what is described here is a

problem in that the fourth area is overwriting-

contaminated by the virus even though the relativity of

the flag without contamination suggests that the fourth

area is legitimate, that is, even though the second flag

on sixth flag off seventh flag off. The fourth area

is established the number of restarts kn. The fourth

area is held as the fourth area kn according to the

fourth rule. Every time of execution, VWA takes XOR

between the fourth area kn and the fourth area at the

execution. If the areas are the same, the fourth area kn

is not contaminated. If the areas are not the same, the

- 83 -

fourth area is contaminated (see FIG. 5). In the case of

contamination, the vector is initialized by this VWA.

Because of this measure,

(1) The restart counter updated by the Coordinate

Function is provided.

(2) The number of restart counter is one for the present

program.

(3) The provided position is immediately after a position

where criticality evaluation of the Coordinate Function

becomes NO.

(4) The vector adds the restart counter Kn at the time of

establishment of the fourth area and holds the fourth

area.

(5) The restart counter is placed in privileged areas

which are not contaminated in a manner analogous to that

of the number of established subjects and the stack of

the number of established subjects.

[0152]

 (Privileged areas)

 As to the restart counter, the number of established

subjects, and the stack structure, presence or absence of

contamination is observed using the constant of XOR so as

to allow observation through the scheme of observing

contamination of the three types of flags of the program

model of VWA (FIG. 5). According to the present

invention, such areas (the three types of flags, the

restart counter, the number of established subjects, and

- 84 -

the stack structure) are represented as the privileged

areas. The entire contamination of the privileged areas

is observed by VWA using the XOR constant in a manner

analogous to that of the observation of contamination of

the three types of flags. An example of the XOR constant

therefor is described below.

(1) The on and off of the flag area is indicated at the

highest one of four (binary) digits.

In case of contamination of the flag area, not only the

highest digit but also the lower three digits are also

contaminated. Consequently, lower three digits of the

four digits being zero are established as an XOR constant

in this case.

(2) In the restart counter, the count value is indicated

from the highest digit of the four digits.

In case of contamination of the restart counter, the

lowest digit of the four digits is also contaminated.

Consequently, the lowest one digit of the four digits

being zero is established as an XOR constant in this case.

(3) In the counter of the number of established subjects,

the count value is indicated from the highest digit of

the four digits.

In case of contamination of the counter of the number of

established subjects, the lowest digit of the four digits

is also contaminated. Consequently, the lowest one digit

of the four digits being zero is established as an XOR

constant in this case.

- 85 -

(4) In case of contamination of the stack of the number

of established subjects, the case is the same as that of

the destruction of an instruction according to the

characteristics. This state cannot be detected by the

XOR constant. Consequently, this state is detected by

E42.

According to the scheme, the strict and profound scheme

of the present program detects contamination, and

automatically performs recovery. Viral contamination

that destroys such a scheme of the present program cannot

be that other than the destruction of an instruction.

[0153]

 (Place of on and off of three types of flags)

• The initial value of the second flag is off.

• The second flag is turned off by the sixth rule.

• The second flag is turned off by the seventh rule.

• The second flag is turned off by the Coordinate

Function.

• The initial value of the sixth flag is on.

• The sixth flag is turned on by the sixth rule.

• The sixth flag is turned off by the fourth rule.

• The sixth flag is turned off by the fifth rule.

• The initial value of the seventh flag is off.

• The seventh flag is turned on by the seventh rule.

• The seventh flag is turned off by the Coordinate

Function.

[0154]

- 86 -

 (Virus watching algorithm (VWA))

 The virus watching algorithm observes the

contamination of three types of flags, and in case of

contamination, this algorithm determines that the fourth

area is also contaminated. In this case, the vector is

initialized (see FIG. 5). The virus watching algorithm

(FIG. 5) is placed at the head of the entire vector as

shown in FIG. 4A. It is determined that the situation

where three types of flags are not contaminated but the

fourth area is contaminated cannot occur. If this

situation occurs, logical inconsistency is caused. This

case is covered by E42.

[0155]

 (Addition of dynamics of program)

 The program dynamic analysis method of Laval

University, which was an authority of the dynamic

analysis method in 2000s, is a method of adopting the

establishment trajectory of nouns (variable names)

belonging to the program. According to this method, the

establishment trajectory of the conventional program

forms a spaghetti structure. Meanwhile, analysis of the

Scenario Function according to the present application

verifies that the establishment trajectory of nouns forms

a comb form but does not form so-called spaghetti

structure, and visually shows the problem structure of

the conventional software (see FIG. 1E). That is, use of

the dynamic analysis adopting the trajectory of subjects

- 87 -

allows the conventional program and the Scenario Function

to result in the structure of the scheme of meaning (FIG.

12) denoted by the present invention. This can be

considered to be one of proofs that the Scenario Function

is at the highest rank as the program description method.

The usage of the scheme of meaning is more effective as

the program dynamic analysis tool of the conventional

program than the Scenario Function.

[0156]

 (Dynamics of the present program)

 The dynamics of the present program in the computer

is a scheme for establishing FIG. 12 through data

connection. The dynamics of conventional program in the

computer is a scheme for establishing FIG. 12 through

logic connection. The virus invades the present program

in operation. The state of the present program in

operation is a state where the present program is

creating the solution of the present program, for example,

FIG. 12 using a computer. As the virus selects the

present program A as a medium to be invaded from among

the multiple programs for example, the virus invades the

present program A. In view of the present program A,

viral invasion is a situation where the program is

contaminated irrationally during operation. In this case,

the number of contaminated instructive statements is

unknown to anyone. Thus, according to the present

invention, the presence or absence of contamination in

- 88 -

every instruction ruled by the vector is observed by the

vector at the time of execution. The present program

includes the important flags, and counter of the number

of established subjects, and its stack. There is however

a possibility that these elements are also contaminated.

In case of contamination, the present program is

resultantly detected by E42 that detects contamination of

the instructions which does not reach destruction of an

instruction.

[0157]

 (Appropriateness of present invention)

 The appropriateness of the present invention can be

found by associating three items, or the illustration of

this Description, the attached program model, and the

following problems, with each other. The problem in this

case is the following four types of schemes.

(1) Scheme of performing original operation

(2) Scheme of disabling viruses

(3) Completeness of the present program

(4) Establishment of algorithm of automatically

converting conventional program into the present program

[0158]

 (Scheme of performing original operation)

 The three types of Coordinate Functions start the

Subject Vectors mounted on the ruling Palettes, and

establish the subjects. The present program has a scheme

of establishing the subject as much as possible using the

- 89 -

genealogy relationship according to the restart structure.

The above description is a necessary and sufficient proof

of the present program being in the original operation.

[0159]

 (Objects to be contaminated in the present program)

 The objects to be contaminated in the present

program are as follows.

(1) Vectors, Coordinate Functions, and instructive

statements of ruling Synchronization Functions

(2) Data area

(3) Thee types of flags, counter of the number of

established subjects, and stack area of counter of the

number of established subjects

[0160]

 (What is virus disabling)

 Virus disabling is taking the following measures.

(1) Initialization of the data area

(2) Stop executing the program

[0161]

 (Scheme of disabling viruses)

 Fifteen universal schemes (without exception) used

in the present program are listed below.

(1) Structure of vector

(2) Three types of flags

(3) VWA and its position

(4) Scheme of restart structure

(5) Scheme of Coordinate Period

- 90 -

(6) Scheme of synchronization structure

(7) Scheme of ascertaining the legitimacy of vector used

in the first rule of vector

(8) Scheme of ascertaining the legitimacy of fourth area

used in the third rule of vector

(9) Scheme of detecting contamination of the fourth area

used by VWA

(10) Scheme of EOR constant for detecting contamination

of the privileged area used by VWA

(11) Scheme of detecting the logical inconsistency by E42

using the stack of the number of established subjects

(12) Scheme of ascertaining the possibility of

establishing the fourth area using the stack of the

number of established subjects according to the fifth

rule

(13) Position for counting the number of established

subjects for the stack of the number of established

subjects

(14) Scheme of ascertaining the criticality of the

Palette

(15) Scheme of ascertaining the program criticality

[0162]

 (Completeness of the present program)

 The scheme of the genealogy of establishing the

maximum number of legitimate subjects is a proof of the

completeness of the original operation of the present

program. Incidentally, proving the completeness of the

- 91 -

original operation of the conventional program negates

the need to test the program.

[0163]

 (Scheme of automatically converting conventional

program into the present program)

 The algorithm of generating the LYEE Space from the

conventional program (FIGS. 11A and 11B) and the

algorithm of generating the present program from the LYEE

Space (FIG. 1B) allow the conventional program to be

automatically converted into the present program. The

program structure of the present invention including

multiple Scenario Functions is called a rank structure.

FIG. 9 is a diagram showing an example of a diagram of a

rank structure of Scenario Functions. In this diagram,

4(1, 1) denotes a Coordinate Function-4 of a rank

structure (1, 1), 2(1, 1) denotes a Coordinate

Function-2 of a rank structure (1, 1), and 3(1, 1)

denotes a Coordinate Function-3 of a rank structure (1,

1). (X, Y) of the rank structure is the identifier of

the present program constituting the rank structure. The

Control Vectors T4, 2 and 31 play a role of connecting

the Coordinate Functions 4, 2 and 3 of the present

program at the same rank. The Control Vectors T32 and 33

play roles of connecting the Coordinate Functions at

different ranks. The Scenario Functions with the rank

structure are connected by the vectors T32 and T33. The

conventional program is required to be made up of

- 92 -

multiple programs theoretically and in actuality.

Meanwhile, the Scenario Function can be theoretically

made up of only a single Scenario Function. This is

because as to the Scenario Function, the program required

to constitute the system can be supported by the vectors.

[0164]

 The rank structure is provided because of reasons

due to the problem on system operational management.

Since the conventional program is the logic connection

type, the logic corresponding to the Coordinate Function

and Synchronization Function is not established.

Consequently, the system requires multiple programs. The

Coordinate Functions and the Synchronization Functions

are universal. Consequently, the Scenario Function is

established irrespective of the amount of vectors. There

is no reason that the Scenario Function is divided into

multiple pieces. Discussion can be made while the

Scenario Function is replaced with the present program.

[0165]

 The program at a position in the rank structure of

the programs to which subjects belonging to the program

belong is described. FIG. 13 is a diagram for showing

the program at a position in the rank structure of the

programs to which subjects belonging to the program

belong according to one embodiment of the present

invention. This diagram shows the variable subjects of

the subject A(1, 1) belonging to the rank (1, 1), for

- 93 -

example, the program with a certain rank structure to

which the subjects B and C belong. This example shows

that the subjects of the variable subjects B and C belong

to the same rank structure. The subjects of the variable

subjects B and C are B and C.

[0166]

 (Relationship between logic connection-type program

and Scenario Function)

 As shown in FIG. 1B, the logic connection-type

program can be automatically converted into the Scenario

Function of the present invention by a dedicated tool.

[0167]

 (Subject and variable subject)

 As to the Scenario Function, an instruction is an

operation for obtaining a subject. For example, A, B and

C in an instruction "A = B + C" are nouns, A is a subject,

and B and C are variable subjects. The variable subjects

B and C become a subject B and a subject C at another

place in the Scenario Function. Discussion can be made

while the Scenario Function is replaced with the present

program.

[0168]

 (Basic characteristics of the present program that

solves virus problems)

 As apparent in the program dynamic analysis by Laval

University, no universality can be found in the (so-

called) spaghetti situation of the definition and

- 94 -

dynamics of the conventional program. On the other hand,

the dynamics of the Scenario Function is the data

connection type, while the method of describing the

vectors, Coordinate Functions and the Synchronization

Functions, which are configuration elements of the

Scenario Function, is the logic connection type.

Universality, which is duplicability, is established in

the definition of the source code. This is because

universality is established in definition of the vectors.

As apparent in the program dynamic analysis by Laval

University, the data connection establishes universality

with a comb form scene. The present program can solve

the virus problems as predicate inconsistency, because

universality which can be found in the definition of

source code, and its dynamics is established. The

Synchronization Functions and the Coordinate Functions

according to the present invention do not have intrinsic

data areas. In the present application, what has an

intrinsic data area is only the vector. Consequently,

when the vector solves contamination in the data area,

the Synchronization Function and the Coordinate Function

are not affected. The vector does not define the

function in a manner analogous to that of a conventional

partial program. The scheme of determining the fourth

area (subject) is only defined. As a result, the

Coordinate Function results in a scheme of obtaining the

fourth area to the criticality, and the Synchronization

- 95 -

Function results in a scheme of synchronizing the

obtained fourth area. Various functions required for the

conventional concept are not required at all for the

Scenario Function. As a result, the Scenario Function is

much more monotonous than the conventional program in an

unrecognizable manner. The scheme of detecting and

solving viral contamination is established because of

this monotonousness.

[0169]

 (Meaning of restart structure)

 The restart structure of the Scenario Function is

for establishing the subjects belonging to the Palette

and genealogization of the subjects to the possible limit.

That is, the structure is the ultimate structure of the

extensive scheme of pursuing the scheme of meaning to the

possible limit. This restart structure is a scheme which

A. vector, B. three types of Coordinate Functions, and C.

one Synchronization Function commonly has. The vector

has a restart structure of operating itself to the

possible limit (criticality) in order to establish its

fourth area (subject). The Coordinate Function has a

restart structure of operating to the possible limit in

order to genealogize the fourth area (subject) of the

vector among the ruling Palettes and establish fourth

areas as many as possible.

[0170]

- 96 -

 In the relationship between the three types of

Palettes, the Synchronization Function has a restart

structure of operating the Synchronization Function to

the possible limit in order to establish the fourth areas

(subjects) of the vectors as many as possible. All the

schemes of these restart structures are controlled by A.

fourth areas of vectors, B. three types of flags of

vectors, C. five types of T-vectors (T4, T2, T31, T32,

T33), and D. two types of E-vectors (E41, E42). The

present invention avoids the problem of complexity that

is a weak point inevitably caused by the conventional

program, by means of the intrinsic perspective of the

program and the restart structure of the program obtained

based on the perspective, which serve as the Scenario

Function changing the complexity into a simple structure.

The present program is established as a program structure

of solving the virus problems based on the Scenario

Function.

[0171]

 (Meaning of synchronization structure)

 The present invention has found out that what we

regard as the problem is an asynchronous situation,

through the conventional program dynamic analysis, and

the solution to the problem is regarded as procedures of

changing the situation into the synchronization structure.

The dynamics of the Scenario Function is established by

data connection, while the dynamics of the conventional

- 97 -

program is established by logic connection. These each

mean a solution. The Scenario Function is a scheme of

establishing the synchronization structure using a

computer. However, the conventional program has already

determined the way of solution at the stage of defining

the source code. This is the cause of complexing the

dynamics of the conventional program to the spaghetti

structure. The scheme of meaning shown in FIG. 12 is the

ideal structure of the solution. In the conventional

programming world, no algorithm for establishing the

scheme of the meaning has been found. It can be

considered that this is because it is impossible to

derive the synchronization structure from the

asynchronous situation of program. Incidentally, the

synchronization structure is an algorithm of obtaining

the scheme of meaning of the program, and is the first

discovery in the world.

[0172]

 (Supplementation to synchronization structure)

 The research of the present invention supposes that

the meaning is established by a scheme of synchronizing

the tense (present, past, and future). The scheme, that

is, the scheme of obtaining a solution successfully

results in the Scenario Function. In addition, the

conventional program does not have the concept of

solution. Thus, the conventional program does not have

the concept of the synchronization structure itself.

- 98 -

This is a fault which the conventional program has

completely unnoticed. In the Scenario Function, the time

of establishing synchronization of all the types of tense,

that is, the timing of establishing meaning scheme, is

represented as synchronization period. The

synchronization period can be seen on the Synchronization

Function. In the Scenario Function, 12 types of vectors

appear. These types are classified according to three

types of tense. The Palette is a container for

accommodating the vectors classified according to tense.

Thus, the number of types of Palettes is three. The

three types of Palettes are ruled by intrinsic three

types of Coordinate Functions, respectively. The

Coordinate Function-4 is a model of an operation of

synchronizing the present tense. The Coordinate

Function-2 is a model of an operation of synchronizing

the past tense. The Coordinate Function-3 is a model of

an operation of synchronizing the future tense. The

Synchronization Function plays a role of ruling the types

of synchronization.

[0173]

 (Criticality of Palette)

 The Coordinate Function-4 starts all the vectors on

the ruling Palette-4, and verifies the presence or

absence of the vector with the sixth flag being on among

the vectors belonging to the Palette-4 every time the

start is finished. With any vector having the flag being

- 99 -

on, the Coordinate Function-4 restarts all the vectors on

the Palette-4 from the beginning. The restart is

repeated until the vector with the sixth flag being on is

absent among the vectors belonging to the Coordinate

Function-4. In other words, the repetition is made until

the fourth area of every vector of the Palette-4 is on

and the seventh flag is on in a satisfactory manner. In

the present invention, this satisfactory state is called

the criticality of the Palette-4. The period from the

first start of the Coordinate Function-4 to the critical

state of the Palette-4 being reached is the Coordinate

Period of the Coordinate Function-4.

[0174]

 The Coordinate Period is established also in the

Coordinate Function-2 and the Coordinate Functions-3 in

the same manner. The Coordinate Period is one mode of

the synchronization structure. The Coordinate Period of

the Coordinate Function-4 is the timing when the stack of

the number of established subjects in the present program

is created and updated. The stack of the number of

established subjects determined according to the time is

used in the fifth rule of all the vectors. That is, a

future condition for evaluating whether the fourth area

that is the solution of the vector is established in the

future is ascertained by the stack structure according to

the number of established subjects at the end point of

the Coordinate Period of the Coordinate Function-4 and

- 100 -

its timing. This scheme cannot be obtained by the

concept of the conventional program.

[0175]

 (Scheme for establishing genealogy for subject)

 The scheme of meaning of FIG. 12 is a diagram

genealogizing the subject. Everyone can understand the

genealogy by looking at the diagram. However, without

looking at this, the entire content thereof cannot be

understood. The Harmonization genealogy can be

understood as a flowchart. However, the most part of the

Metalinguistic genealogy is an unknown genealogy. You

are encouraged to notice that even if the program is a

conventional one, the program is established on the basis

of the scheme of meaning. That is, even though we make a

program without understanding the most of the logic how

the program is established, we behave as if we have known

the logic of the program only based on the Harmonization

genealogy. The Scenario Function and the program of the

present invention based on the Scenario Function assumes

that what we know is only logic of subjectifying a noun;

with this assumption, this program establishes a certain

kind of scheme of meaning that is the solution of the

program. The completeness of the program and the

solution to the virus problems are established by knowing

the scheme of meaning of the program.

[0176]

 (Scheme of detecting logical inconsistency)

- 101 -

 The present program is a scheme of adding the second

flag and the virus watching algorithm to the vector of

the Scenario Function and establishing the justified

subject genealogy.

[0177]

 Unlike the conventional program, the present program

has a scheme of establishing the process of the program

according to the genealogy of the subject. If the

genealogy is established by an uncontaminated subject,

i.e., a subject against the intent of the program, the

normal process cannot be achieved. Consequently, the

present program has a scheme of establishing the

genealogy with an uncontaminated subject, i.e., a

legitimate subject. That is, in the virus watching

algorithm, and the first rule and the third rule of the

vector, logic is described for observation while

preventing the contaminated subject from affecting the

genealogy. Consequently, if any contaminated subject

affects the genealogy, inconsistency occurs in the

description. This inconsistency can be detected as

description against the logic. In other words, the

scheme of the present program detects the viral

contamination on a subject-by-subject basis, thereby

allowing the contamination to be completely detected.

This scheme has been obtained through the research for

obtaining a complete scheme of a program. That is, this

has been obtained irrespective of viruses. Consequently,

- 102 -

the present program can detect viral contamination

without using virus tags (viral information), and disable

the viruses. The virus problems are problems which

cannot be solved based on knowledge on viruses. The

virus watching algorithm detects contamination, and

initializes the contaminated vector. The first rule of

the vector observes vector legitimacy through the

relativity between the fourth area and three types of

flags. The third rule of the vector observes the

legitimacy of the fourth area (subject) in the

relationship of the justified subject genealogy. In view

of the present program, the virus cannot approach the

present program while watching the present program with

sidelong glances, and cannot exist without behaving as if

sleeping.

[0178]

 (Counting subjects)

 When the legitimate subject (fourth area) is

established, the number of established subjects is

counted by adding one to the counter of the number of

established subjects by the fourth rule of the vector.

If the virus watching algorithm evaluates that the

subject (fourth area) is not legitimate, this virus

watching algorithm initializes the vector. At this time,

the virus watching algorithm decrements the counter of

the number of established subjects by one.

[0179]

- 103 -

 (Stack structure)

 The stack structure diagram of FIG. 6 is referred to.

This diagram is a diagram showing a stack structure of

the number of established subjects (having the same

meaning as the number of established fourth area) used by

the present program according to one embodiment of the

present invention. The single stack is provided for the

present program. This stack is generated using the

Coordinate Period of the Coordinate Function-4. There is

no need of generation in the Coordinate Function-2 and

the Coordinate Function-3. This stack is used in the

vector.

The usage is described as follows.

 (1) Use in fifth rule of vector

 The fifth rule of the vector is a rule for

determining presence or absence of possibility of

establishment of the fourth area of this vector on the

same Coordinate Period. The stack of the number of

established subjects is used for this evaluation.

That is, if NS1 > NS5, the own fourth area can be

determined that there is a possibility of establishment

on the same Coordinate Period.

[0180]

 (2) Use in Vector E42

 Reference numeral E42 denotes a vector for detecting

destruction of an instruction which cannot be detected by

OS. E42 detects the destruction of an instruction as the

- 104 -

logical inconsistency of the number of established

subjects, that is, NS1 < NS5. If the present program is

normal, the relationship between NS1 and NS5 is

necessarily NS1 > NS5. However, in case a symptom occurs

in the situation, the relationship in the present program

reaches NS1 < NS5.

The cause is any of the following items.

1) Error of vector

2) Contamination of instruction code which has not

reached destruction of the instruction

There is no error 1) described above at the time of

execution. Consequently, the cause is the above 2).

[0181]

 3) Use in Vector E41

 Reference numeral E41 denotes a vector for

ascertaining a state where the number of established

subjects of the present program reaches the criticality

(normal end state of the present program). E41

ascertains this situation as NS1 = NS5.

[0182]

 (4) Use in Vectors T4, T2 and T3

 The limit state of subject established in each

Palette is represented as the criticality of the Palette.

The criticality of the Palette-4 serves as the

establishment condition of T4. The criticality of the

Palette-2 serves as the establishment condition of T2.

The criticality of the Palette-3 serves as one of the two

- 105 -

establishment conditions of T31, T32 and T33. Another

condition is the residing position of the subject

represented by the subject distribution table.

[0183]

(1) When the conventional program is contaminated, the

contamination affects not only the program but also the

system to which the program belongs.

(2) Replacement of the conventional program with the

program of the present invention solves the virus

problems.

(3) The conventional program can be automatically

converted into the present program by the dedicated tool,

as can be understood with FIG. 1B.

(4) A classroom lecture for about 60 hours is required

for an engineer of the conventional program to create the

present program efficiently.

[0184]

 (Reason of presence of logic connection-type program

in the present program)

 A program model pertaining to the present program is

attached to this Description. In the present program,

programs having data areas are only vectors according to

the present application. The data area is a target to be

contaminated. Thus, the vector requires a scheme for

disabling contamination in the data area. Consequently,

in the present invention, the second flag and VWA are

added to the vector. It should be noted that the

- 106 -

programs other than the vectors in the present invention,

that is, the VWA, Coordinate Function, and

Synchronization Function have no intrinsic data area.

With respect to this point, these programs do not cause

the contamination problems of data areas. That is, the

contamination occurring therein is only the destruction

of an instruction. This is an advantageous effect of the

vector, and the characteristics of the present program.

Thus, the VWA, Coordinate Function, and Synchronization

Function are allowed to be left as the logic connection-

type programs. In a case where the program has no

intrinsic data area, the program can be shared

irrespective of the creator of the program even if the

duplicability is not established. That is, the VWA,

Coordinate Function, and Synchronization Function can be

shared irrespective of the creator even if the

duplicability is not established. This is also one type

of duplicability.

[0185]

 (Model of the present program)

 The example of the algorithm of the present program

(hereinafter called "program model") is attached for the

sake of understanding of the contents of this Description,

and the structure represented in a program, that is, FIGS.

3, 4A, 5, 7 and 8. Thus, for the sake of avoiding

confusion of understanding due to complexity, not all the

contents of this Description are modeled. The degree of

- 107 -

modeling is kept within an extent sufficient as

disclosure of the technical thought of the invention of

the present application. Even a creator of the

conventional programmer can create the program based on

the present invention using the illustration of this

Description and the program model. The present program

model serves as specifications that suggest the tool of

automating the coding of the present program (see FIG.

1B).

[0186]

 The present program is created for each programming

language. The invention of present application is

applicable to cases using any of a screen operation

language, and DB and DC languages, among which the

creator's favorite one can be used. The present program

is completed by creating the vectors, Coordinate

Functions and Synchronization Functions on the basis of

the program model described below and combining these

items according to the definitive expression of Scenario

Function. If there is one combination of the coordinate

and Synchronization Functions in the world, this

combination can be used as it is.

[0187]

 (Mode of logic connection-type program of VWA(L4,

A))

 FIG. 5 is referred to. Next, the program model in

this case is shown.

- 108 -

001 START.

002 Observe contamination of the second flag:

0021 Extract (2, 3, 4)-th digits of the second flag are

extracted.

0022 Take XOR of the (2, 3, 4)-th digits of the second

flag and the corresponding flag constant (0, 0, 0).

00221 If ZERO, the second flag is not contaminated.

GO TO Observation of the sixth flag.

00222 If NOT ZERO, the second flag is contaminated.

GO TO Initialization of L4, A.

003 Observe contamination of the sixth flag:

0031 Extract (2, 3, 4)-th digits of the sixth flag are

extracted.

0032 Take XOR of the (2, 3, 4)-th digits of the sixth

flag and the corresponding flag constant (0, 0, 0).

00321 If ZERO, the sixth flag is not contaminated.

GO TO Observation of the seventh flag.

00322 If NOT ZERO, the sixth flag is contaminated.

GO TO Initialization of L4, A.

004 Observe contamination of the seventh flag:

0041 Extract (2, 3, 4)-th digits of the seventh flag are

extracted.

0042 Take XOR of the (2, 3, 4)-th digits of the seventh

flag and the corresponding flag constant (0, 0, 0).

00421 If ZERO, the seventh flag is not contaminated.

RETURN.

00422 If NOT ZERO, the seventh flag is contaminated.

- 109 -

GO TO Initialization of L4, A.

005 Initialize L4, A

0051 Initialize the fourth area.

0052 Turn off the second flag.

0053 Turn on the sixth flag.

0054 Turn off the seventh flag.

006 Decrement the counter of the number of established

subjects by one.

007 RETURN.

[0188]

 (Vector model of L4, A)

 The vector instructive statement example is "A = B +

C + 512". The instructive statement ruled by L4, A is

placed in the second rule according to the vector

description method. In L4, A there is no L3, A. If L3,

A is present in L4, A, legitimacy evaluation of L3, A is

added to the third rule. Next, the program model in this

case is shown.

001 START.

002 NOP.

003 CALL VWA(L4, A).

004 The first rule: Evaluate whether to advance to the

second rule or RETURN using the legitimacy L4, A.

 * see the section of vector legitimacy

005 The second rule.

0051 MOVE 1 TO the second flag

- 110 -

0052 A = B + C + 512.

006 The third rule: Evaluate the legitimacy of A (fourth

area legitimacy).

0061 Is the fourth area of L4, B is legitimate?

00611 If legitimate, GOTO 0062.

00612 If not legitimate, GOTO the fifth rule.

0062 Is the fourth area of L4, C is legitimate?

00621 If legitimate, GOTO the fourth rule.

00622 If not legitimate, GOTO the fifth rule.

007 The fourth rule.

0071 MOVE 0 TO the sixth flag of L4, A.

0072 MOVE A TO the fourth area of L4, A.

0073 ADD 1 TO the counter of the number of established

subjects.

008 RETURN.

009 The fifth rule: Evaluate whether A of L4, A is

established on the same Coordinate Period.

0091 MOVE 0 TO the sixth flag

0092 If (NS1 = NS5), the processing advances to the

seventh rule.

0093 If (NS1 > NS5), the processing advances to the sixth

rule.

010 the sixth rule: declare restart request for L4, A.

0101 Initialize the fourth area of L4, A.

0102 MOVE 1 TO the sixth flag.

0103 MOVE 0 TO the second flag.

0104 RETURN.

- 111 -

011 The seventh rule: declare stopping restart of L4, A.

0111 MOVE 1 TO the seventh flag.

0112 MOVE 0 TO the second flag.

0113 RETURN.

[0189]

 (Vector model of L3, D)

 The vector instructive statement example is "IF X <

Y(true)". The instructive statement ruled by L3, D is

placed in the third rule according to the vector

description method. Next, the program model in this case

is shown.

001 START.

002 NOP.

003 CALL VWA(L3, D).

004 The first rule: Evaluate whether to advance to the

second rule or RETURN using the legitimacy L3, D.

 * see the section of vector legitimacy

005 The second rule.

0051 MOVE 1 TO the second flag

0052 NOP.

006 The third rule: Evaluate the legitimacy of IF X < Y.

0061 Is the fourth area of L4, X is legitimate?

00611 If legitimate, GOTO 0062.

00612 If not legitimate, GOTO the fifth rule.

0062 Is the fourth area of L4, Y is legitimate?

00621 If legitimate, GOTO 0063.

- 112 -

00622 If not legitimate, GOTO the fifth rule.

0063 IF X < Y?

00631 If legitimate, GOTO the fourth rule.

00632 If not legitimate, GOTO the fifth rule.

007 The fourth rule.

0071 MOVE 0 TO the sixth flag of L3, D.

0072 MOVE 1 TO the fourth area of L3, D.

0073 ADD 1 TO the counter of the number of established

subjects.

008 RETURN.

009 The fifth rule: Evaluate whether D of L3, D is

established on the same Coordinate Period.

0091 MOVE 0 TO the sixth flag

0092 If (NS1 = NS5), the processing advances to the

seventh rule.

0093 If (NS1 > NS5), the processing advances to the sixth

rule.

010 the sixth rule: declare restart request for L3, D.

0101 Initialize the fourth area of L3, D.

0102 MOVE 1 TO the sixth flag.

0103 MOVE 0 TO the second flag.

0104 RETURN.

011 The seventh rule: declare stopping restart of L3, D.

0111 MOVE 1 TO the seventh flag.

0112 MOVE 0 TO the second flag.

0113 RETURN.

[0190]

- 113 -

 (Vector model of L2, C)

 The vector instructive statement example is "C = 11".

The instructive statement ruled by L2, C is placed in the

second rule according to the vector description method.

In L2, C there is no L3, C. If L3, C is present in L2, C,

legitimacy evaluation of L3, C is added to the third rule.

In this case, the fifth, sixth and seventh rules occur.

Next, the program model in this case is shown.

001 START.

002 NOP.

003 CALL VWA(L2, C).

004 The first rule: Evaluate whether to advance to the

second rule or RETURN using the legitimacy L2, C.

 * see the section of vector legitimacy

005 The second rule.

0051 MOVE 1 TO the second flag

0052 C = 11.

006 The third rule: Evaluate the legitimacy of C in C =

11. NOP.

007 The fourth rule

0071 MOVE 0 TO the sixth flag of L2, C.

0072 MOVE C TO the fourth area of L2, C.

0073 ADD 1 TO the counter of the number of established

subjects.

008 RETURN.

009 The fifth rule: NOP.

- 114 -

010 the sixth rule: NOP.

011 the seventh rule: NOP.

[0191]

 (Vector model of W4, URIAGE)

 The vector instructive statement example "WRITE

URIAGE, DB11" is adopted. This is an instructive

statement of writing URIAGE in an external memory area

"DB11". The subject of the instructive statement is

established in DB11. The legitimacy of DB11 is unknown.

The role of the vector is to output legitimate L4, URIAGE

to DB11. The instructive statement ruled by W4, URIAGE

is placed in the fourth rule according to the vector

description method. VWA of W4, URIAGE is replaced with

L4, URIAGE and processed according to the first and third

rules. It is assumed that in the W4, URIAGE there is no

L3, URIAGE. If L3, URIAGE is present in W4, URIAGE, the

legitimacy evaluation of L3, URIAGE is also added to the

third rule. Next, the program model in this case is

shown.

001 START.

002 NOP.

003 CALL VWA(W4, URIAGE).

004 The first rule: Evaluate whether to advance to the

second rule or RETURN using the legitimacy L4, URIAGE.

 * see the section of vector legitimacy

005 The second rule.

0051 MOVE 1 TO the second flag

- 115 -

0052 NOP.

006 The third rule: Evaluate the legitimacy of L4, URIAGE.

0061 Is the fourth area of L4, URIAGE is legitimate?

00611 If legitimate, GOTO the fourth rule.

00612 If not legitimate, GOTO the fifth rule.

007 The fourth rule.

0071 MOVE 0 TO the sixth flag of W4, URIAGE.

0072 WRITE URIAGE, DB11.

0073 ADD 1 TO the counter of the number of established

subjects.

008 RETURN.

009 The fifth rule: Evaluate whether URIAGE of L4, URIAGE

is established on the same Coordinate Period.

0091 MOVE 0 TO the sixth flag

0092 If (NS1 = NS5), the processing advances to the

seventh rule.

0093 If (NS1 > NS5), the processing advances to the sixth

rule.

010 The sixth rule: Declare restart request for W4,

URIAGE.

0101 Initialize the fourth area of L4, URIAGE.

0102 MOVE 1 TO the sixth flag.

0103 MOVE 0 TO the second flag.

0104 RETURN.

011 The seventh rule: Declare stopping restart of W4,

URIAGE.

0111 MOVE 1 TO the seventh flag.

- 116 -

0112 MOVE 0 TO the second flag.

0113 RETURN.

[0192]

 (Vector model of R2 DB11)

 The vector instructive statement example is assumed

as "READ DB11, aggregation". This is an instructive

statement of moving the external memory area "DB11" to

the aggregation. The subject of the instructive

statement is established in the aggregation. The role of

this vector is to establish legitimate aggregation. The

instructive statement ruled by R2 DB11 is placed in the

second rule according to the vector description method.

VWA of R2 DB11 is replaced with L4, aggregation, and

processed according to the first and third rules. It is

assumed that in the R2 DB11 there is no L3, URIAGE. If

L3, DB11 is present in R2 DB11, legitimacy evaluation of

L3, DB11 is added to the third rule. Next, the program

model in this case is shown.

001 START.

002 NOP.

003 CALL VWA(R2 DB11).

004 The first rule: Evaluate whether to advance to the

second rule or RETURN using the legitimacy L4,

aggregation.

 * see the section of vector legitimacy

005 The second rule.

0051 MOVE 1 TO the second flag

- 117 -

0052 READ DB11, aggregation.

006 The third rule: Evaluate the legitimacy of L4,

aggregation.

0061 Is the fourth area of L4, aggregation is legitimate?

00611 If legitimate, GOTO 007.

00612 If not legitimate, GOTO the fifth rule.

007 The fourth rule.

0071 MOVE 0 TO the sixth flag.

0072 MOVE the aggregation TO READ DB11, the fourth area

of aggregation.

0073 ADD 1 TO the counter of the number of established

subjects.

008 RETURN.

009 The fifth rule: Evaluate whether the aggregation of

L4, aggregation is established on the same Coordinate

Period.

0091 MOVE 0 TO the sixth flag

0092 If (NS1 = NS5), the processing advances to the

seventh rule.

0093 If (NS1 > NS5), the processing advances to the sixth

rule.

010 The sixth rule: READ DB11, declare a restart request

for aggregation.

0101 READ DB11, initialize the fourth area of the

aggregation.

0102 MOVE 1 TO the sixth flag.

- 118 -

0103 MOVE 0 TO the second flag.

0104 RETURN.

011 The seventh rule: READ DB11, declare stopping the

restart of aggregation.

0111 MOVE 1 TO the seventh flag.

0112 MOVE 0 TO the second flag.

0113 RETURN.

[0193]

 (Logic connection-type model of E41, P4 program)

 E41, P4 notifies that the present program is in an

end state. To facilitate understanding of E41, P4, the

description is made with the logic connection type.

However, E41 has the intrinsic data area (fourth area).

Consequently, programming is performed with the vector

structure in actuality. Next, the program model in this

case is shown.

001 START.

002 NS1 is adopted from the stack of the number of

established subjects.

003 NS5 is adopted from the stack of the number of

established subjects.

004 Evaluate whether (NS1) = (NS5).

0041 If YES, GO TO 005.

0041 If NO, GO TO 006.

005 MOVE 1 TO the fourth area of E41.

006 RETURN.

[0194]

- 119 -

 (Logic connection-type model of E41, P4 program)

 E42, P4 notifies the symptom of logical

inconsistency caused in the present program by means of

the contamination of the instruction that does not reach

the destruction of an instruction. To facilitate

understanding of E42, P4, the description is made with

the logic connection type. However, E42 has the

intrinsic data area (fourth area). Consequently,

programming is performed with the vector structure in

actuality. Next, the program model in this case is shown.

001 START.

002 NS1 is adopted from the stack of the number of

established subjects.

003 NS5 is adopted from the stack of the number of

established subjects.

004 Evaluate whether (NS1) < (NS5): the logical

inconsistency caused in the present program can be

detected by this relationship.

0041 If YES, GO TO 005.

0041 If NO, GO TO 006.

005 MOVE 1 TO the fourth area of E42.

006 RETURN.

[0195]

 (Logic connection-type model of T4, P4 program)

 T4, P4 notifies that the condition of switching the

Coordinate Function-4 to the Coordinate Function-2 is

satisfied, through the fourth area. To facilitate

- 120 -

understanding of T4, P4, the description is made with the

logic connection type. However, T4 has the intrinsic

data area (fourth area). Accordingly, programming is

performed with the vector structure in actuality. Next,

the program model in this case is shown.

001 START.

002 Evaluate the criticality of P4.

0021 Create the sixth flag string of the Palette-4.

0022 Create the constants of the sixth flag string of the

Palette-4.

003 Take XOR of the sixth flag string and the constants

of the sixth flag string on the Palette-4.

0031 If XOR is ZERO, GOTO 004.

0032 If XOR is NOT ZERO, GOTO 005.

004 MOVE 1 TO the fourth area of T4.

005 RETURN.

[0196]

 (Logic connection-type model of T2, P2 program)

 T2, P2 notifies that the condition of switching the

Coordinate Function-2 to the Coordinate Function-3 is

satisfied, through the fourth area. To facilitate

understanding of T2, P2, the description is made with the

logic connection type. However, T2 has the intrinsic

data area (fourth area). Accordingly, programming is

performed with the vector structure in actuality. Next,

the program model in this case is shown.

001 START.

- 121 -

002 Evaluate the criticality of P2.

0021 Create the sixth flag string of the Palette-2.

0022 Create the constants of the sixth flag string of the

Palette-2.

003 Take XOR of the sixth flag string and the constants

of the sixth flag string on the Palette-2.

0031 If XOR is ZERO, GOTO 004.

0032 If XOR is NOT ZERO, GOTO 005.

004 MOVE 1 TO the fourth area of T4.

005 RETURN.

[0197]

 (Logic connection-type model of T31, P3 program)

 The "fourth area of T31" notifies that the condition

of switching the Coordinate Function-3 to the own

Coordinate Function-4 is satisfied. To facilitate

understanding of T31, P3, the description is made with

the logic connection type. However, T31 has the

intrinsic data area (fourth area). Accordingly,

programming is performed with the vector structure in

actuality. The initial value of the fourth area of T31

is on. Next, the program model in this case is shown.

001 START.

002 Evaluate the criticality of P3.

0021 Create the sixth flag string of the Palette-3.

0022 Create the constants of the sixth flag string of the

Palette-3.

- 122 -

003 Take XOR of the sixth flag string and the constants

of the sixth flag string on the Palette-3 (first

condition).

0031 If XOR is ZERO, GOTO 004.

0032 If XOR is NOT ZERO, GOTO 006.

004 Evaluation through use of the subject distribution

table (FIG. 13).

0041 Are all the subjects of the present program in the

present program (second condition).

0042 If YES, GO TO 005.

0043 If NO, GO TO 006.

005 MOVE 1 TO the fourth area of T31.

006 RETURN.

[0198]

 (Logic connection-type model of T32, P3 program)

 The "fourth area of T32" notifies that the condition

of switching the Coordinate Function-3 to the Coordinate

Function-4 of the present program (2, 1) lower in the

rank structure than the present program (1, 1) is

satisfied. To facilitate understanding of T32, P3, the

description is made with the logic connection type.

However, T32 has the intrinsic data area (fourth area).

Accordingly, programming is performed with the vector

structure in actuality. Next, the program model in this

case is shown.

001 START.

002 Evaluate the criticality of P3.

- 123 -

0021 Create the sixth flag string of the Palette-3.

0022 Create the constants of the sixth flag string of the

Palette-3.

003 Take XOR of the sixth flag string and the constants

of the sixth flag string on the Palette-3 (first

condition).

0031 If XOR is ZERO, GOTO 004.

0032 If XOR is NOT ZERO, GOTO 006.

004 Evaluation through use of the subject distribution

table (FIG. 13).

0041 Is the subject of the present program in the

immediately lower present program (second condition).

0042 If YES, GO TO 005.

0043 If NO, GO TO 006.

005 MOVE 1 TO the fourth area of T32.

006 RETURN.

[0199]

 (Logic connection-type model of T33, P3 program)

 The "fourth area of T33" notifies that the condition

of switching the Coordinate Function-3 to the Coordinate

Function-3 of the highest present program in the rank

structure with respect to the present program (1, 1) is

satisfied. To facilitate understanding of T33, P3, the

description is made with the logic connection type.

However, T33 has the intrinsic data area (fourth area).

Accordingly, programming is performed with the vector

- 124 -

structure in actuality. Next, the program model in this

case is shown.

001 START.

002 Evaluate the criticality of P3.

0021 Create the sixth flag string of the Palette-3.

0022 Create the constants of the sixth flag string of the

Palette-3.

003 Take XOR of the sixth flag string and the constants

of the sixth flag string on the Palette-3 (first

condition).

0031 If XOR is ZERO, GOTO 004.

0032 If XOR is NOT ZERO, GOTO 006.

004 Evaluation through use of the subject distribution

table (FIG. 13).

0041 Is the subject of the present program in the

immediately upper present program (second condition).

0042 If YES, GO TO 005.

0043 If NO, GO TO 006.

005 MOVE 1 TO the fourth area of T32.

006 RETURN.

[0200]

 (Description of "subject distribution table" FIG.

13)

 This diagram is for representing to which program

the subject belongs among the present programs belonging

to the rank structure. For example, (1, 1) is the

- 125 -

position coordinates of the Scenario Function in the rank

structure.

[0201]

 (Program logic connection-type model of Coordinate

Function-4)

 The program model of the Coordinate Function-4 is

described below.

001 START.

002 Designate the vector with the installation order 1 (i

= 1) on the Palette-4: start of the Coordinate Period-4.

003 Start the vector having the installation order (i).

004 Here is the RETURN point of the started vector.

005 Evaluate presence or absence of the instruction

destroying signal (OS).

0051 In the case of presence, start SEP: Stop execution

of the present program.

0052 In the case of absence, GO TO 006.

006 Designate the next vector to be started (i = i + 1).

007 Does (i) exceed the number of installed vectors (N4)

on the Palette-4.

0071 In the exceeded case, GO TO 008.

0072 In the not exceeded case, GO TO 003.

008 Determine the achievement of the criticality of the

Palette-4: use of turning ON and OFF the fourth area of

T4

0081 If OFF, GO TO 002.

- 126 -

0082 If ON, GO TO 009: End of Coordinate Period-4

009 Evaluate presence or absence of logical inconsistency

occurrence: use of turning ON and OFF the fourth area of

E42.

0091 If ON, start SLP: Stop execution of the present

program.

0092 If OFF, GO TO 010: no logical inconsistency occurs

in the present program

010 Perform the following process to return to the

Synchronization Function.

0101 Initialize all the vectors with the seventh flag

being on, on the Palette-4.

0102 Start a stack update program.

011 RETURN to the Synchronization Function.

[0202]

 (Program logic connection-type model of Coordinate

Function-2)

 The program model of the Coordinate Function-2 is

described below.

001 START.

002 Designate the vector with the installation order 1 (i

= 1) on the Palette-2: start of the Coordinate Period-2.

003 Start the vector having the installation order (i).

004 Here is the RETURN point of the started vector.

005 Evaluate presence or absence of the instruction

destroying signal (OS).

- 127 -

0051 In the case of presence, start SEP: Stop execution

of the present program.

0052 In the case of absence, GO TO 006.

006 Designate the next vector to be started (i = i + 1).

007 Does (i) exceed the number of installed vectors (N2)

on the Palette-2?

0071 In the exceeded case, GO TO 008.

0072 In the not exceeded case, GO TO 003.

008 Evaluate the achievement of the criticality of the

Palette-2: use of turning ON and OFF the fourth area of

T2

0081 If OFF, GO TO 002.

0082 If ON, GO TO 009: End of Coordinate Period-2

009 Evaluate presence or absence of logical inconsistency

occurrence: use of turning ON and OFF the fourth area of

E42.

0091 If ON, start SLP: Stop execution of the present

program.

0092 If OFF, GO TO 010: no logical inconsistency occurs

in the present program

010 Perform the following process to return to the

Synchronization Function.

0101 Initialize all the vectors with the seventh flag

being on, on the Palette-2.

011 RETURN to the Synchronization Function.

[0203]

- 128 -

 (Program logic connection-type model of Coordinate

Function-3)

 The program model of the Coordinate Function-3 is

described below.

001 START.

002 Designate the vector with the installation order 1 (i

= 1) on the Palette-3: start of the Coordinate Period-3.

003 Start the vector having the installation order (i).

004 Here is the RETURN point of the started vector.

005 Evaluate presence or absence of the instruction

destroying signal (OS).

0051 In the case of presence, start SEP: Stop execution

of the present program.

0052 In the case of absence, GO TO 006.

006 Designate the next vector to be started (i = i + 1).

007 Does (i) exceed the number of installed vectors (N3)

on the Palette-2.

0071 In the exceeded case, GO TO 008.

0072 In the not exceeded case, GO TO 003.

008 Evaluate the achievement of the criticality of the

Palette-3: use of turning ON and OFF the fourth area of

T2

0081 If OFF, GO TO 002.

0082 If ON, GO TO 009: End of Coordinate Period-5

- 129 -

009 Evaluate presence or absence of logical inconsistency

occurrence: use of turning ON and OFF the fourth area of

E42.

0091 If ON, start SLP: Stop execution of the present

program.

0092 If OFF, GO TO 010: no logical inconsistency occurs

in the present program

010 Perform the following process to return to the

Synchronization Function.

0101 Initialize all the vectors with the seventh flag

being on, on the Palette-3.

011 RETURN to the Synchronization Function.

[0204]

 (Program logic connection-type model of

Synchronization Function)

001 START.

002 Start a stack initializing program.

003 Finish evaluation of the present program: use of

turning ON and OFF of the fourth area of E41

0031 If ON, GO TO 004: a finish process of the present

program

0032 If OFF, GO TO 005: start the present program

004 Start SEP: System Ending Program (program of

finishing the present program)

005 Evaluate whether ON or OFF in the fourth area of T31:

start the own Coordinate Function-4

0051 If ON, turn OFF the fourth area of T31.

- 130 -

0052 Start the own Coordinate Function-4

0053 If OFF, GO TO 006.

006 Evaluate whether ON or OFF in the fourth area of T32:

start the nearest lower Coordinate Function-4

0061 If ON, turn ON the fourth area of T32.

0062 Start the nearest lower Coordinate Function-4.

0063 If OFF, GO TO 007: If the nearest lower Coordinate

Function-4 is absent, turn OFF.

007 Evaluate whether ON or OFF in the fourth area of T33:

start the highest Coordinate Function-3

0071 If ON, turn OFF the fourth area of T33.

0072 Start the highest Coordinate Function-3

0073 If OFF, GO TO 008: If the highest Coordinate

Function-3 is absent, turn OFF.

008 Evaluate whether ON or OFF in the fourth area of T4:

start the own Coordinate Function-2

0081 If ON, turn OFF the fourth area of T4.

0082 Start the own Coordinate Function-2

0083 If OFF, GO TO 009: start the own Coordinate

Function-3.

009 Evaluate whether ON or OFF in the fourth area of T2:

start the own Coordinate Function-3

0091 If ON, turn OFF the fourth area of T2.

0092 Start the own Coordinate Function-3

0093 If OFF, GO TO 010.

010 Evaluate whether ON or OFF in the fourth area of T32:

start the Coordinate Function-4 immediately therebelow

- 131 -

0101 If ON, turn OFF the fourth area of T32.

0102 Start the own Coordinate Function-4 immediately

therebelow

0103 If OFF, GO TO 011.

011 Evaluate whether ON or OFF in the fourth area of T33:

start the highest Coordinate Function-3

0111 If ON, turn OFF the fourth area of T33.

0112 Start the highest Coordinate Function-3

0103 If OFF, GO TO 052.

012 END.

[0205]

 (Vector model of E41, P4 program)

 Two examples of the logic connection-type models of

the Control Vectors are replaced with vectors. The same

replacement method is applicable to the other Control

Vectors. The prototype of converting the Control Vector

of the logic connection-type model into the vector model

is L4, A. The instructive statement of the vector

adopts a stack. The instructive statement adopting the

stack is placed in the second rule. E41, P4 does not

have L3. Next, the program model is shown.

001 START.

002 NOP.

003 CALL VWA(E41, P4).

004 The first rule: Evaluate whether to advance to the

second rule or RETURN using the legitimacy E41, P4.

 * see the section of vector legitimacy

- 132 -

005 The second rule.

0051 MOVE 1 TO the second flag

0052 NS1 is adopted from the stack of the number of

established subjects.

0053 NS5 is adopted from the stack of the number of

established subjects.

006 The third rule: Evaluate whether (NS1) = (NS5).

0061 If YES, GO TO the fourth rule.

0062 If NO, GO TO the fifth rule.

007 The fourth rule.

0071 MOVE 0 TO the sixth flag of E41, P4.

0072 MOVE A TO the fourth area of E41, P4.

0073 ADD 1 TO the counter of the number of established

subjects.

008 RETURN.

009 The fifth rule: Determine whether E41, P4 is

established on the same Coordinate Period.

0091 MOVE 0 TO the sixth flag

0092 If (NS1 = NS5), GO TO the seventh rule.

0093 If (NS1 > NS5), GO TO the sixth rule.

010 the sixth rule: declare restart request for E41, P4.

0101 Initialize the fourth area of E41, P4.

0102 MOVE 0 TO the sixth flag.

0103 MOVE 0 TO the second flag.

0104 RETURN.

011 The seventh rule: declare stopping restart of E41, P4.

0111 MOVE 1 TO the seventh flag.

- 133 -

0112 MOVE 0 TO the second flag.

0113 RETURN.

[0206]

 (Vector model of T33, P3 program)

 The instructive statement of the vector

adopts a stack. The instructive statement adopting the

stack is placed in the second rule. T33, P3 does not

have L3. Next, the program model is shown.

001 START.

002 NOP.

003 CALL VWA(T33, P3).

004 The first rule: Evaluate whether to advance to the

second rule or RETURN using the legitimacy T33, P3.

 * see the section of vector legitimacy

005 The second rule: Prepare evaluation of achievement of

T33, P3:

0051 MOVE 1 TO the second flag

0052 Create the sixth flag string of the Palette-3.

0053 Create the constants of the sixth flag string of the

Palette-3.

006 The third rule: Determine the achievement of T33 and

P3.

061 Determine the criticality of P3.

00611 Take XOR of the sixth flag string and the constants

of the sixth flag string on the Palette-3 (first

condition).

00612 If XOR is ZERO, GOTO 0062.

- 134 -

00613 If XOR is NOT ZERO, GOTO the fifth rule.

0062 Determination through use of the subject

distribution table (FIG. 13).

00621 Is the subject of the present program in the

immediately upper program (second condition).

00622 If YES, GO TO the fourth rule.

00623 If NO, GO TO RETURN.

007 The fourth rule.

0071 MOVE 0 TO the sixth flag of T33, P3.

0072 MOVE A TO the fourth area of T33, P3.

0073 ADD 1 TO the counter of the number of established

subjects.

008 RETURN.

009 The fifth rule: Determine whether P3 is established

on the same Coordinate Period.

0091 MOVE 0 TO the sixth flag

0092 If (NS1 > NS5), GO TO the sixth rule.

0093 If not (NS1 > NS5), GO TO the seventh rule.

010 the sixth rule: declare restart request for E41, P4.

0101 Initialize the fourth area of T33, P3.

0102 MOVE 1 TO the sixth flag.

0103 MOVE 0 TO the second flag.

0104 RETURN.

011 The seventh rule: declare stopping restart of T33, P3.

0111 MOVE 1 TO the seventh flag.

0112 MOVE 0 TO the second flag.

0113 RETURN.

- 135 -

[0207]

 (Program logic connection-type model of stack update

program)

001 START.

002 If the counter of the number of established subjects

is zero, initialize the stack: start the stack

initializing program.

003 RETURN.

004 If the counter of the number of established subjects

is not zero and NS1, 2, 3 and 4 are zero,

005 Overwrite NS1 with the counter of the number of

established subjects

006 RETURN.

007 If the counter of the number of established subjects

is not zero and NS1, 2, 3 and 4 are zero,

008 Overwrite NS2 with NS1.

009 Overwrite NS1 with the counter of the number of

established subjects

010 RETURN.

011 If the counter of the number of established subjects

is not zero and NS 3 and 4 are zero,

012 Overwrite NS2 with NS1.

013 Overwrite NS3 with NS2.

014 Overwrite NS1 with the counter of the number of

established subjects

015 RETURN.

- 136 -

016 If the counter of the number of established subjects

is not zero and NS 4 is zero,

017 Overwrite NS2 with NS1.

018 Overwrite NS3 with NS2.

019 Overwrite NS4 with NS3.

020 Overwrite NS1 with the counter of the number of

established subjects

021 RETURN.

022 If the counter of the number of established subjects

is not zero and all NS are not zero,

023 Overwrite NS2 with NS1.

024 Overwrite NS3 with NS2.

025 Overwrite NS4 with NS3.

026 Overwrite NS5 with NS4.

027 Overwrite NS1 with the counter of the number of

established subjects

028 RETURN.

[0208]

 (Program logic connection-type model of stack

initializing program)

 Start (CALL) the present program at the start point

of the synchronization period for the fifth rule (NS1 >

NS5) of the Subject Vector using this stack information,

and the Control Vectors E41 (NS1 = NS5) and E42 (NS1 <

NS5). Next, the program model is shown.

001 START.

002 Set one in NS5.

- 137 -

003 Zero-clear NS4.

004 Zero-clear NS3.

005 Zero-clear NS2.

006 Zero-clear NS1.

007 Zero-clear the counter of the number of established

subjects.

008 RETURN.

[0209]

 Even if a virus invades a program in operation

according to the present invention (hereinafter "the

present program"), regardless of the timing and means of

invasion and the number of attempts thereof, the present

program autonomously detects the virus as contamination

of a memory area used by the program and disinfects the

contamination for quick recovery in order to continue the

normal operation of the present program.

[0210]

 The present program detects the virus as

contamination caused by false information against the

intent of the present program. Upon occurrence of

contamination, the present program detects the

contamination as a predicate inconsistency. The present

program is provided with the scheme. However, this

scheme is not for detecting an invading virus but is

needed as a structural requirement in order for the

program to exist as a legitimate program. The present

program disinfects the detected contamination using a

- 138 -

scheme in accordance with the present invention. This

disinfecting scheme is obtained also as the structural

requirement for allowing the program to be present as a

legitimate program. Timing for detecting contamination

and timing for disinfecting the contamination are timing

according to the present invention. The timing of

disinfection prevents the viral symptom from occurring,

in view of which this exerts the same operational effect

as that of destroying the viral intent. This is an

advantageous effect that is intrinsic to the present

application and is exerted only by the present

application.

[0211]

 As described above in detail, the present invention

provides an intrinsic solution to virus problems. That

is, the present program does not solve viruses as the

virus problems. The present program has the scheme of

making the virus problems (viral invasion problems and

viral symptom problems) absent even with presence of

viruses, that is, the scheme of solution.

[0212]

 The technical thought according to the present

application is not limited to the above embodiments, but

can be variously modified, replaced, adoption of an

alternative, improved, enlarged, and reduced within the

scope of this thought instead. The technical thought

according to the present application is also applicable

- 139 -

to a program, a functional chip, and a secondary combined

product mounted with the device according to the present

invention. Furthermore, the present invention can be

implemented as: the definition structure of a program

that is the structure intrinsic to the present invention,

autonomously solves the virus problems and has been

described above in detail; the storage medium equipped

with the program; the method of disabling the virus

problems; and the device for autonomously solving virus

problem (equipped as a component that serves functions

equivalent to that of these programs, for example). That

is, FIG. 14 is the overall structure diagram showing one

mode that can be equipped with the present program

according to one embodiment of the present invention. As

shown here, the present application can be achieved as

and applied to: a system 1400 equipped with, as the

overall structure program, all of a routine 1431 having a

vector L4 structure according to the present application,

a routine 1441 having a vector L2 structure, a routine

1451 having a vector L3 structure, a routine 1430 having

an L4 Palette structure in which a routine 1431 is

accumulated according to the present application, a

routine 1440 having an L2 Palette structure in which a

routine 1441 is accumulated according to the present

application, and a routine 1450 having an L3 Palette

structure in which a routine 1451 is accumulated

according to the present application (description on

- 140 -

other vectors R2, W4 and the like are omitted but it is a

matter of course that these vectors are included); a mode

that provides these item as individual programs in an ASP

(application service provider) form; a mode that provides

these functions in separate components as devices; a mode

that provides the programs in separate programs; and a

mode that provides these items as a storage medium

installed with the programs. The core part of this

technical thought described above is applicable to any of

these mechanisms.

[0213]

 The computer programs have already been widespread

over all the fields of the human beings. Consequently,

as with fields in which programs have already been

threatened, the programs in all the fields will be

incessantly threatened by the virus problems without

exception. The present invention contributes to the

human beings in terms of solving the virus problems once

for all. The present invention cannot be found and

replaced. In this view, the present invention has a

possibility of huge usability not only in the computer

industry but also in various industries including

automobile, aircraft, nuclear energy, and household

electrical appliance industries.

Reference Signs List

[0214]

- 141 -

 1A-1...Memory area of computer, 1A-10...Conventional

program, 1A-11...Program of present invention, 1C-

1...Memory area of computer, 1C-10...Conventional program,

1C-11...Program of present invention, and 1C-2...Computer

virus

- 142 -

What is claimed is:

1. A definition structure of a program, the structure

enabling the program to establish:

 a contamination detection mechanism for unassistedly

detecting contamination in case a predetermined memory

area for a program in an execution state is contaminated

with anti-intent information against intent on the

program because of any reason;

 a decontamination mechanism for unassistedly

disinfecting the contamination detected by the

contamination detection mechanism; and

 a normal state recovery mechanism for causing the

memory area to recover a normal state automatically.

2. The definition structure of a program according to

claim 1, wherein the contamination detection mechanism

has a structure of a vector that includes first to

seventh rules.

3. The definition structure of a program according to

claim 1, wherein the decontamination mechanism includes

an initialization mechanism for initializing the vector.

4 The definition structure of a program according to

claim 3, wherein the decontamination mechanism

initializes the vector at timing before appearance of a

symptom intended and caused by the anti-intent

information with which the contamination is ascertained.

5. The definition structure of a program according to

claim 3, wherein the vector has a structure that adds

- 143 -

optimal timing to the contamination detection mechanism

and/or the decontamination mechanism.

6. The definition structure of a program according to

claim 1, wherein the normal state recovery mechanism has

a restart mechanism that is established in the program.

7. The definition structure of a program according to

claim 1,

 wherein the vector pertaining to the contamination

detection mechanism includes at least a second flag that

indicates passage through the second rule, a sixth flag

for requesting restart of the vector itself, a seventh

flag for declaring a temporary stop of the restart of the

vector itself, and a fourth area that is an area

evaluated by the third rule and determined by the fourth

rule, and

 the contamination detection mechanism includes a

three-type flags and fourth area relative relationship

evaluating mechanism that evaluates relative relationship

between the second, sixth and seventh flags and the

fourth area.

8. The definition structure of a program according to

claim 2, further comprising a fourth area genealogy

legitimacy evaluating mechanism for evaluating legitimacy

of genealogy of the fourth area in order to evaluate the

legitimacy of the fourth area by the third rule of the

vector.

- 144 -

9. The definition structure of a program according to

claim 2, further comprising a fourth area genealogy

achievement prediction mechanism that performs future

prediction of achievement of genealogy of the fourth area

using a stack of the number of achievements in the fourth

area according to the fifth rule pertaining to the vector.

10. The definition structure of a program according to

claim 1, further comprising an instruction contamination

detection mechanism that detects instruction

contamination that cannot be detected by an OS pertaining

to the program.

11. A definition structure of an autonomous virus

solution program for solving, as a program structure, a

problem which a virus invading an operation program

started on an OS (operating system) or a data area

pertaining to the operation program can cause,

comprising:

 a Coordinate Function-4 that has a structure cycling

until a critical state of a Palette-4 where vector

structures are accumulated in any order is achieved, the

vector structure being a minimum predicate structure for

determining content for a data area serving as a subject;

 a Coordinate Function-2 that has a structure cycling

until a critical state of a Palette-2 where vector

structures are accumulated in any order is achieved, the

vector structure being a minimum predicate structure for

determining content for a data area serving as a subject;

- 145 -

 a Coordinate Function-3 that has a structure cycling

until a critical state of a Palette-3 where vector

structures are accumulated in any order is achieved, the

vector structure being a minimum predicate structure for

determining content for a data area serving as a subject;

 a Synchronization Function that causes control to

transition to the Palette-2 when the Palette-4 comes into

the critical state, transition to the Palette-3 when the

Palette-2 comes into the critical state, and transition

to any of the Coordinate Function-3 pertaining to a

highest rank, the Coordinate Function-4 pertaining to an

identical rank, and the Coordinate Function-4 pertaining

to a layer lower by one layer according to presence of a

fourth area of a variable subject for establishing the

subject when the Palette-3 comes into the critical state.

12. The definition structure of a program according to

claim 11, wherein the vector includes:

 a contamination detection mechanism for unassistedly

detecting contamination in case the data area is

contaminated because of any reason;

 a decontamination mechanism for unassistedly

disinfecting the contamination detected by the

contamination detection mechanism; and

 a normal state recovery mechanism for causing the

memory area to recover a normal state automatically.

13. The definition structure of a program according to

claim 11, wherein the vector has first to seventh rules.

- 146 -

14. The definition structure of a program according to

claim 12, wherein the decontamination mechanism includes

an initialization mechanism for initializing the vector.

15. The definition structure of a program according to

claim 14, wherein the decontamination mechanism

initializes the vector at timing before appearance of a

symptom intended and caused by the anti-intent

information with which the contamination is ascertained.

16. The definition structure of a program according to

claim 12, wherein the vector has a structure that adds

optimal timing to the contamination detection mechanism

and/or the decontamination mechanism.

17. The definition structure of a program according to

claim 12, wherein the normal state recovery mechanism has

a restart mechanism that is established in the program.

18. The definition structure of a program according to

claim 12,

 wherein the vector pertaining to the contamination

detection mechanism includes at least a second flag that

indicates passage through the second rule, a sixth flag

for requesting restart of the vector itself, a seventh

flag for declaring a temporary stop of the restart of the

vector itself, and a fourth area that is an area

evaluated by the third rule and determined by the fourth

rule, and

 the contamination detection mechanism includes a

three-type flags and fourth area relative relationship

- 147 -

evaluating mechanism that evaluates relative relationship

between the second, sixth and seventh flags and the

fourth area.

19. The definition structure of a program according to

claim 13, further comprising a fourth area genealogy

legitimacy evaluating mechanism for evaluating legitimacy

of genealogy of the fourth area in order to evaluate the

legitimacy of the fourth area by the third rule of the

vector.

20. The definition structure of a program according to

claim 13, further comprising a fourth area genealogy

achievement prediction mechanism that performs future

prediction of achievement of genealogy of the fourth area

using a stack of the number of achievements in the fourth

area according to the fifth rule pertaining to the vector.

21. The definition structure of a program according to

claim 11, further comprising an instruction contamination

detection mechanism that detects instruction

contamination that cannot be detected by an OS pertaining

to the program.

22. The definition structure of a program according to

claim 11, further comprising a Palette critical state

ascertaining mechanism for ascertaining the critical

state of the Palette used to switch the Coordinate

Function.

23. A storage medium storing the definition structure of

a program according to claim 1.

- 148 -

24. An autonomous virus solution device causing the

definition structure of a program according to claim 1 to

function as a component of the device.

25. An autonomous virus solution method, comprising:

 unassistedly detecting contamination in case a

predetermined memory area for a program in an execution

state is contaminated with anti-intent information

against intent on the program because of any reason;

 unassistedly disinfecting the detected

contamination; and

 causing the memory area to recover a normal state

automatically.

26. The autonomous virus solution method according to

claim 25, wherein the contamination is ascertained by

having a structure of a vector having first to seventh

rules.

27. The autonomous virus solution method according to

claim 26, wherein the disinfecting is performed by an

initialization mechanism for initializing the vector.

28. The autonomous virus solution method according to

claim 27, wherein the disinfecting initializes the vector

at timing before appearance of a symptom intended and

caused by the information with which the contamination is

ascertained.

29. The autonomous virus solution method according to

claim 27, wherein the vector has a structure that adds

- 149 -

optimal timing to the contamination and/or the

disinfecting.

30. The autonomous virus solution method according to

claim 25, wherein the recovering automatically to the

normal state is performed by a restart mechanism that is

established in the program.

31. The autonomous virus solution method according to

claim 25,

 wherein the vector includes at least a second flag

that indicates passage through the second rule, a sixth

flag for requesting restart of the vector itself, a

seventh flag for declaring a temporary stop of the

restart of the vector itself, and a fourth area that is

an area evaluated by the third rule and determined by the

fourth rule, and

 the contamination is ascertained by evaluating

relative relationship between the second, sixth and

seventh flags and the fourth area.

32. The autonomous virus solution method according to

claim 26, further evaluating legitimacy of genealogy of

the fourth area in order to evaluate the legitimacy of

the fourth area by the third rule of the vector.

33. The autonomous virus solution method according to

claim 26, further performing future prediction of

achievement of genealogy of the fourth area using a stack

of the number of achievements in the fourth area

according to the fifth rule pertaining to the vector.

- 150 -

34. The autonomous virus solution method according to

claim 26, further detecting instruction contamination

that cannot be detected by OS pertaining to the program.

- 151 -

Abstract

 Even if a virus invades a program in operation

according to the present invention, regardless of the

timing and means of invasion and the number of attempts

thereof, the present program autonomously and

unassistedly detects the virus as contamination of a

memory area used by the program and disinfects the

contamination for quick recovery in order to continue the

normal operation. The present program detects the virus

as contamination caused by false information against the

intent of the present program. Upon occurrence of

contamination, the present program detects the

contamination as a predicate inconsistency. However,

this scheme is not for detecting an invading virus but is

needed as a structural requirement in order for the

program to exist as a legitimate program. The present

program disinfects the detected contamination using a

scheme in accordance with the present invention. The

timing of disinfection prevents the symptoms of the

invading virus from appearing, in view of which this

exerts the same operational effect as that of destroying

the viral intention. Consequently, the virus invading

the present program is disabled by the present program

before appearance of the intended symptoms of the virus.

